chromatin immunoprecipitation assay
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 10)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
Chen-Yu Wang ◽  
Chien-Chung Yang ◽  
Li-Der Hsiao ◽  
Chuen-Mao Yang

AbstractExcessive production of reactive oxygen species (ROS) by NADPH oxidase (Nox) resulted in inflammation. The negative regulator of ROS (NRROS) dampens ROS generation during inflammatory responses. 15-Deoxy-∆12,14-prostaglandin J2 (15d-PGJ2) exhibits neuroprotective effects on central nervous system (CNS). However, whether 15d-PGJ2-induced NRROS expression was unknown in rat brain astrocytes (RBA-1). NRROS expression was determined by Western blot, RT/real-time PCR, and promoter activity assays. The signaling components were investigated using pharmacological inhibitors or specific siRNAs. The interaction between transcription factors and the NRROS promoter was investigated by chromatin immunoprecipitation assay. Upregulation of NRROS on the hydrogen peroxide (H2O2)-mediated ROS generation and interleukin 6 (IL-6) secretion was measured. 15d-PGJ2-induced NRROS expression was mediated through PI3K/Akt-dependent activation of Sp1 and FoxO1 and established the essential promoter regions. We demonstrated that 15d-PGJ2 activated PI3K/Akt and following by cooperation between phosphorylated nuclear FoxO1 and Sp1 to initiate the NRROS transcription. In addition, Nrf2 played a key role in NRROS expression induced by 15d-PGJ2 which was mediated through its phosphorylation. Finally, the NRROS stable clones attenuated the H2O2-induced ROS generation and expression of IL-6 through suppressing the Nox-2 activity. These results suggested that 15d-PGJ2-induced NRROS expression is mediated through a PI3K/Akt-dependent FoxO1 and Sp1 phosphorylation, and Nrf2 cascade, which suppresses ROS generation through attenuating the p47phox phosphorylation and gp91phox formation and IL-6 expression in RBA-1 cells. These results confirmed the mechanisms underlying 15d-PGJ2-induced NRROS expression which might be a potential strategy for prevention and management of brain inflammatory and neurodegenerative diseases.


2021 ◽  
Vol 22 (2) ◽  
pp. 753
Author(s):  
Shibnath Ghatak ◽  
Vincent C. Hascall ◽  
Roger R. Markwald ◽  
Suniti Misra

Cancer initiating cells (CICs) drive tumor formation and drug-resistance, but how they develop drug-resistance characteristics is not well understood. In this study, we demonstrate that chemotherapeutic agent FOLFOX, commonly used for drug-resistant/metastatic colorectal cancer (CRC) treatment, induces overexpression of CD44v6, MDR1, and oncogenic transcription/translation factor Y-box-binding protein-1 (YB-1). Our study revealed that CD44v6, a receptor for hyaluronan, increased the YB-1 expression through PGE2/EP1-mTOR pathway. Deleting CD44v6, and YB-1 by the CRISPR/Cas9 system attenuates the in vitro and in vivo tumor growth of CICs from FOLFOX resistant cells. The results of DNA:CD44v6 immunoprecipitated complexes by ChIP (chromatin-immunoprecipitation) assay showed that CD44v6 maintained the stemness traits by promoting several antiapoptotic and stemness genes, including cyclin-D1,BCL2,FZD1,GINS-1, and MMP9. Further, computer-based analysis of the clones obtained from the DNA:CD44v6 complex revealed the presence of various consensus binding sites for core stemness-associated transcription factors “CTOS” (c-Myc, TWIST1, OCT4, and SOX2). Simultaneous expressions of CD44v6 and CTOS in CD44v6 knockout CICs reverted differentiated CD44v6-knockout CICs into CICs. Finally, this study for the first time describes a positive feedback loop that couples YB-1 induction and CD44 alternative splicing to sustain the MDR1 and CD44v6 expressions, and CD44v6 is required for the reversion of differentiated tumor cells into CICs.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Zeljka Miletic Lanaghan ◽  
Ireti Eni-Aganga ◽  
Muthukumar Balasubramaniam ◽  
Chandravanu Dash ◽  
Jui Pandhare

2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Yong Feng ◽  
Yunfei Liao ◽  
Jianming Zhang ◽  
Jacson Shen ◽  
Zengwu Shao ◽  
...  

Abstract Background Aberrant expression of cyclin-dependent protein kinases (CDK) is a hallmark of cancer. CDK11 plays a crucial role in cancer cell growth and proliferation. However, the molecular mechanisms of CDK11 and CDK11 transcriptionally regulated genes are largely unknown. Methods In this study, we performed a global transcriptional analysis using gene array technology to investigate the transcriptional role of CDK11 in osteosarcoma. The promoter luciferase assay, chromatin immunoprecipitation assay, and Gel Shift assay were used to identify direct transcriptional targets of CDK11. Clinical relevance and function of core-binding factor subunit beta (CBFβ) were further accessed in osteosarcoma. Results We identified a transcriptional role of protein-DNA interaction for CDK11p110, but not CDK11p58, in the regulation of CBFβ expression in osteosarcoma cells. The CBFβ promoter luciferase assay, chromatin immunoprecipitation assay, and Gel Shift assay confirmed that CBFβ is a direct transcriptional target of CDK11. High expression of CBFβ is associated with poor outcome in osteosarcoma patients. Expression of CBFβ contributes to the proliferation and metastatic behavior of osteosarcoma cells. Conclusions These data establish CBFβ as a mediator of CDK11p110 dependent oncogenesis and suggest that targeting the CDK11- CBFβ pathway may be a promising therapeutic strategy for osteosarcoma treatment. Graphical Abstract


2019 ◽  
Vol 2 (4) ◽  
pp. e201900318 ◽  
Author(s):  
Junaid Akhtar ◽  
Piyush More ◽  
Steffen Albrecht ◽  
Federico Marini ◽  
Waldemar Kaiser ◽  
...  

Chromatin immunoprecipitation (ChIP) followed by next generation sequencing (ChIP-Seq) is a powerful technique to study transcriptional regulation. However, the requirement of millions of cells to generate results with high signal-to-noise ratio precludes it in the study of small cell populations. Here, we present a tagmentation-assisted fragmentation ChIP (TAF-ChIP) and sequencing method to generate high-quality histone profiles from low cell numbers. The data obtained from the TAF-ChIP approach are amenable to standard tools for ChIP-Seq analysis, owing to its high signal-to-noise ratio. The epigenetic profiles from TAF-ChIP approach showed high agreement with conventional ChIP-Seq datasets, thereby underlining the utility of this approach.


2019 ◽  
Vol 476 (12) ◽  
pp. 1741-1751
Author(s):  
Yanyan Guo ◽  
Zuying Xiong ◽  
Xiaoqiang Guo

Abstract Podocytes are terminally differentiated and highly specialized glomerular cells, which have an essential role as a filtration barrier against proteinuria. Histone methylation has been shown to influence cell development, but its role in podocyte differentiation is less understood. In this study, we first examined the expression pattern of histone demethylase KDM6B at different times of cultured human podocytes in vitro. We found that the expression of KDM6B and podocyte differentiation markers WT1 and Nephrin are increased in the podocyte differentiation process. In cultured podocytes, KDM6B knockdown with siRNA impaired podocyte differentiation and led to expression down-regulation of WT1 and Nephrin. The treatment of podocytes with GSK-J4, a specific KDM6B inhibitor, can also obtain similar results. Overexpression of WT1 can rescue differentiated phenotype impaired by disruption of KDM6B. ChIP (chromatin immunoprecipitation) assay further indicated that KDM6B can bind the promoter region of WT1 and reduce the histone H3K27 methylation. Podocytes in glomeruli from nephrotic patients exhibited increased KDM6B contents and reduced H3K27me3 levels. These data suggest a role for KDM6B as a regulator of podocyte differentiation, which is important for the understanding of podocyte function in kidney development and related diseases.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Hani Harb ◽  
Bilal Alashkar Alhamwe ◽  
Nathalie Acevedo ◽  
Paolo Frumento ◽  
Catharina Johansson ◽  
...  

Prenatal environmental exposures are considered to contribute to the development of allergic sensitization by epigenetic mechanisms. The role of histone acetylation in the placenta has not been examined yet. We hypothesized that placental histone acetylation at the promoter regions of allergy-related immune regulatory genes is associated with the development of sensitization to allergens in the child. Histones H3 and H4 acetylation at the promoter regions of 6 selected allergy-related immune regulatory genes was assessed by a chromatin immunoprecipitation assay in 173 term placentas collected in the prospective birth-cohort ALADDIN. The development of IgE sensitization to allergens in the children was followed from 6 months up to 5 years of age. We discovered significant associations of histone acetylation levels with decreased risk of allergic sensitization in 3 genes. Decreased risk of sensitization to food allergens was associated with higher H3 acetylation levels in placentas at the IFNG and SH2B3 genes, and for H4 acetylation in HDAC4. Higher HDAC4 H4 acetylation levels were also associated with a decreased risk of sensitization to aeroallergens. In conclusion, our results suggest that acetylation of histones in placenta has a potential to predict the development of sensitization to allergens in children.


Sign in / Sign up

Export Citation Format

Share Document