Generation of Monoclonal Antibodies Against Natural Products

Author(s):  
Yue Zhang ◽  
Peng Cao ◽  
Fang Lu ◽  
Xin Yan ◽  
Bingqian Jiang ◽  
...  
Molecules ◽  
2017 ◽  
Vol 22 (3) ◽  
pp. 355 ◽  
Author(s):  
Xin Yan ◽  
Yan Zhao ◽  
Yue Zhang ◽  
Huihua Qu

Antibodies ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 43
Author(s):  
Yukihiro Shoyama

An immunoblotting system (“eastern blotting”) was developed for small-molecule herbal medicines like glycosides, with no conjugation function to the membrane. Briefly, the crude extracts of herb medicines were developed by thin-layer chromatography (TLC). The small-molecule herbal medicines on TLC plates were transferred to polyvinylidene fluoride (PVDF) or polyethersulfone (PES) membranes by heating. Antigen components were divided into two categories based on their function, i.e., their membrane recognizing (aglycone part) and fixing (sugar moiety) abilities. This procedure allows for the staining of only target glycosides. Double eastern blotting was developed as a further staining system for two herb medicines using a set of MAbs and substrates.


Author(s):  
James E. Crandall ◽  
Linda C. Hassinger ◽  
Gerald A. Schwarting

Cell surface glycoconjugates are considered to play important roles in cell-cell interactions in the developing central nervous system. We have previously described a group of monoclonal antibodies that recognize defined carbohydrate epitopes and reveal unique temporal and spatial patterns of immunoreactivity in the developing main and accessory olfactory systems in rats. Antibody CC2 reacts with complex α-galactosyl and α-fucosyl glycoproteins and glycolipids. Antibody CC1 reacts with terminal N-acetyl galactosamine residues of globoside-like glycolipids. Antibody 1B2 reacts with β-galactosyl glycolipids and glycoproteins. Our light microscopic data suggest that these antigens may be located on the surfaces of axons of the vomeronasal and olfactory nerves as well as on some of their target neurons in the main and accessory olfactory bulbs.


Author(s):  
K.S. Kosik ◽  
L.K. Duffy ◽  
S. Bakalis ◽  
C. Abraham ◽  
D.J. Selkoe

The major structural lesions of the human brain during aging and in Alzheimer disease (AD) are the neurofibrillary tangles (NFT) and the senile (neuritic) plaque. Although these fibrous alterations have been recognized by light microscopists for almost a century, detailed biochemical and morphological analysis of the lesions has been undertaken only recently. Because the intraneuronal deposits in the NFT and the plaque neurites and the extraneuronal amyloid cores of the plaques have a filamentous ultrastructure, the neuronal cytoskeleton has played a prominent role in most pathogenetic hypotheses.The approach of our laboratory toward elucidating the origin of plaques and tangles in AD has been two-fold: the use of analytical protein chemistry to purify and then characterize the pathological fibers comprising the tangles and plaques, and the use of certain monoclonal antibodies to neuronal cytoskeletal proteins that, despite high specificity, cross-react with NFT and thus implicate epitopes of these proteins as constituents of the tangles.


1996 ◽  
Vol 26 (10) ◽  
pp. 1182-1187 ◽  
Author(s):  
P. RESTANI ◽  
A. PLEBANI ◽  
T. VELONA ◽  
G. CAVAGNI ◽  
A. G. UGAZIO ◽  
...  

Ob Gyn News ◽  
2008 ◽  
Vol 43 (4) ◽  
pp. 12 ◽  
Author(s):  
GERALD G. BRIGGS

Sign in / Sign up

Export Citation Format

Share Document