Transmission Pricing Practices: A Case Study

2017 ◽  
Vol 13 (1) ◽  
pp. 1-9
Author(s):  
N. Garg ◽  
D. Palwalia ◽  
Harish Sharma

This paper presents a case study on transmission pricing practices. Now a days, restructuring of the power system market through deregulation is gaining attention as technical and economical benefits at generator and user. In India, after the Electricity Act 2003, restructuring has been introduced in the Indian power system market. Researchers are continuously working towards improvement of deregulation based on restructuring to improve transmission pricing practices and calculations in a better way. Therefore, this paper presents an overview of MWMile and postage stamp methods to estimate the transmission cost. Further, the North Indian practical power system of 37 bus test system has been analyzed by reverse, absolute and dominant Mw-Mile methods. The results obtained to be expected for deregulated power market.

Author(s):  
Sunimerjit Kaur ◽  
Yadwinder Singh Brar ◽  
Jaspreet Singh Dhillon

In this paper, a multi-objective hydro-thermal-wind-solar power scheduling problem is established and optimized for the Kanyakumari (Tamil Nadu, India) for the 18th of September of 2020. Four contrary constraints are contemplated for this case study (i) fuel cost and employing cost of wind and solar power system, (ii) NOx emission, (iii) SO2 emission, and (iv) CO2 emission. An advanced hybrid simplex method named as-the -constrained simplex method (ACSM) is deployed to solve the offered problem. To formulate this technique three amendments in the usual simplex method (SM) are adopted (i) -level differentiation, (ii) mutations of the worst point, and (iii) the incorporation of multi-simplexes. The fidelity of the projected practice is trailed upon two test systems. The first test system is hinged upon twenty-four-hour power scheduling of a pure thermal power system. The values of total fuel cost and emissions (NOx, SO2, CO2) are attained as 346117.20 Rs, 59325.23 kg, 207672.70 kg, and 561369.20 kg, respectively. In the second test system, two thermal generators are reintegrated with renewable energy resources (RER) based power systems (hydro, wind, and solar system) for the same power demands. The hydro, wind, and solar data are probed with the Glimn-Kirchmayer model, Weibull Distribution Density Factor, and Normal Distribution model, respectively. For this real-time hydro-thermal-wind-solar power scheduling problem the values of fuel cost and emissions (Nox, SO2, CO2) are shortened to 119589.00 Rs, 24262.24 kg, 71753.80 kg, and 196748.20 kg, respectively for the specified interval. The outturns using ACSM are contrasted with the SM and evolutionary method (EM). The values of the operating cost of solar system, wind system, total system transmission losses, and computational time of test system-2 with ACSM, SM, and EM are evaluated as 620497.40 Rs, 1398340.00 Rs, 476.6948 MW & 15.6 seconds; 620559.45 Rs, 1398479.80 Rs, 476.7425 MW & 16.8 seconds; and 621117.68 Rs, 1399737.80 Rs, 477.1715 MW and 17.3 seconds, respectively. The solutions portray the sovereignty of ACSM over the other two methods in the entire process.


2013 ◽  
Vol 14 (3) ◽  
pp. 231-238
Author(s):  
Iman Sadeghkhani ◽  
Abbas Ketabi ◽  
Rene Feuillet

Abstract Overvoltages caused by switching operation of power system equipments might damage some equipment and delay power system restoration. This paper presents a comparison between transmission line (TL) models for overvoltages study and investigates which TL model is most proper for every case study. Both simulation time and accuracy factors of TL models are considered for selecting best TL model. Various cases of switching of transformer, shunt reactor, capacitor bank, and transmission line are investigated and simulation results for a partial of 39-bus New England test system, ‎show that the proposed TL model evaluation increase accuracy and reduce simulation time (accelerate power system restoration) properly.


This paper presents a realistic and transparent approach to determine transmission cost for the transmission lines of a power system network by allocating the costs to all the participating generating units and load demands. There is a requirement for developing an appropriate transmission pricing mechanism which can give economic and technical information to the participants of the market, i.e., customers, generation and transmission companies. This paper proposes a methodology to allocate the cost of transmission in power system network. In this paper, accounting rate of return (ARR) and MW-km approaches have been used to evaluate the cost of transmission in the system. Simulation results are presented on standard IEEE 14 bus system.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2191 ◽  
Author(s):  
Changgi Min

This study proposes a method to evaluate the impact of transmission congestion on the flexibility of a power system, based on the ramping capability shortage expectation (RSE). Here, flexibility refers to the ability to retain a power balance in response to changes in the net load. The flexibility issue arises due to the extensive integration of renewable energy resources; specifically, the higher the degree of integration, and the greater the variability and uncertainty in the power system. Flexibility is further limited by the net transfer capacity (NTC) of transmission lines. Here, we propose a method capable of capturing the extent to which transmission congestion affects the power system, to identify transmission reinforcement options for improved flexibility. In Korea, transmission congestion occurs frequently in regions to the north and southeast. A case study for a Korean power system in 2030 was conducted. Simulation results showed that the impact of transmission reinforcement in flexibility tends to be proportional to the NTC and is greater when the penetration level is low.


2021 ◽  
Vol 10 (3) ◽  
pp. 635-651
Author(s):  
Sunimerjit Kaur ◽  
Yadwinder Singh Brar ◽  
Jaspreet Singh Dhillon

In this paper, an advanced modus operandi named the -constrained simplex method (ACSM) is deployed to resolve a real-time hydro-thermal-wind-solar power scheduling problem. ACSM is an updated articulation of the Nonlinear Simplex Method (SM) of Nelder and Mead. It has been designed after interbreeding an ordinary SM with some other methods like-evolutionary method, α-constrained method, etc. To develop this technique three alterations in the SM are adopted (i) -level differentiation, (ii) mutations of the worst point, and (iii) the incorporation of multi-simplexes. A real-time multi-objective hydro-thermal-wind-solar power scheduling problem is established and optimized for the Kanyakumari (Tamil Nadu, India) for the 18th of September of 2020. Four contrary constraints are contemplated for this case study (i)fuel cost and employing cost of wind and solar power system, (ii)  emission, (iii)  emission, and (iv) emission. The fidelity of the projected practice is trailed upon two test systems. The first test system is hinged upon twenty-four-hour power scheduling of a pure thermal power system. The values of total fuel cost,emission, emission, and emission are attained as 4707.19$/day, 59325.23 kg/day, 207672.70 kg/day, and 561369.20 kg/day, respectively. In the second test system, two thermal generators are reintegrated with renewable energy resources (RER) based power system (hydro, wind, and solar system) for the same power demands. The hydro, wind, and solar data are probed with the Glimn-Kirchmayer model, Weibull Distribution Density Factor, and Normal Distribution model, respectively. The outturns using ACSM are contrasted with the SM and evolutionary method(EM). For this real-time hydro-thermal-wind-solar power scheduling problem the values of fuel cost,  emission,  emission, and  emission are shortened to 1626.41 $/day, 24262.24 kg/day, 71753.80 kg/day, and 196748.20 kg/day, respectively for the specified interval using ACSM and with SM, these values are calculated as 1626.57 $/day, 24264.67 kg/day, 71760.98 kg/day, 196767.68 kg/day, respectively. The results for the same are obtained as 1626.74 $/day, 24267.10 kg/day, 71768.15 kg/day, 196787.55 kg/day, respectively, by using EM. The values of the operating cost of the solar system, wind system, total system transmission losses, and computational time of test system-2 with ACSM, SM, and EM are evaluated as 8438.76 $/day, 19017.42 $/day, 476.69 MW/day & 15.6 seconds; 8439.61 $/day, 19019.33 $/day, 476.74 MW/day and 16.8 sec; and 8447.20 $/day, 19036.43 $/day, 477.17 MW/day and 17.3 sec, respectively. The solutions portray the sovereignty of ACSM over the other two methods in the entire process.


Author(s):  
Taiwo Fasina ◽  
Bankole Adebanji ◽  
Adewale Abe ◽  
Isiaka Ismail

Distributed generations (DG) are being installed at increasing rates, both in developed and developing countries. The increasing number of DG connected to the distribution system could have a significant impact on the power system operation. This paper presents a case study investigating the impact of grid-connected DG on the Nigerian power network in terms of bus voltages and network losses. The results showed that without DG, some of the bus voltage magnitudes of the test system were outside the permissible voltage limit of 0.95pu≤Vi≤1.05p.u. However, with DG connected, the voltage magnitudes were improved to allowable values. The network active power loss was reduced by 12.03% from 85.60MW to 75.30MW. In this way, the power system becomes more efficient and secured.


Sign in / Sign up

Export Citation Format

Share Document