scholarly journals A Model of Life Cycle on Biogas Feed to Solid Oxide Fuel Cell in Malaysia: Economic and Environmental Perspective

Author(s):  
Shafini Mohd Shafie ◽  
Zakirah Othman ◽  
A Harits Nu'man ◽  
Nik Nurul Anis Nik Yusuf

Abundant of palm oil waste creates huge potential in producing biogas. Technically, biogas can be fed as an input gas into the fuel cell system to get the electricity output. This paper aims to estimate the life cycle costs and environmental impact for the biogas feed to the solid oxide fuel cell system in two different models: Individual System and Centralized System. Then the system boundary-setting starts from palm oil plantation until the fuel cell system. The result indicates that the individual system is more efficient due to lower cost and emission compared to the centralized system. Life cycle cost for the individual and centralized system is RM 2.56 / kWh and RM 7.04 / kWh, respectively. Then the carbon dioxide emissions are 0.2034 CO2-EQ / kWh and 0.61 CO2-EQ / kWh. Hopefully, the outcome from this paper will be able to assist the decision-maker in planning to model the fuel cell combining with biogas system in the future. Apart from that, its objective is to focus on cost-efficient and more sustainable electricity generation.

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5847
Author(s):  
Niccolò Caramanico ◽  
Giuseppe Di Di Florio ◽  
Maria Camilla Baratto ◽  
Viviana Cigolotti ◽  
Riccardo Basosi ◽  
...  

The building sector is one of the key energy consumers worldwide. Fuel cell micro-Cogeneration Heat and Power systems for residential and small commercial applications are proposed as one of the most promising innovations contributing to the transition towards a sustainable energy infrastructure. For the application and the diffusion of these systems, in addition to their environmental performance, it is necessary, however, to evaluate their economic feasibility. In this paper a life cycle assessment of a fuel cell/photovoltaic hybrid micro-cogeneration heat and power system for a residential building is integrated with a detailed economic analysis. Financial indicators (net present cost and payback time are used for studying two different investments: reversible-Solid Oxide Fuel Cell and natural gas SOFC in comparison to a base scenario, using a homeowner perspective approach. Moreover, two alternative incentives scenarios are analysed and applied: net metering and self-consumers’ groups (or energy communities). Results show that both systems obtain annual savings, but their high capital costs still would make the investments not profitable. However, the natural gas Solide Oxide Fuel Cell with the net metering incentive is the best scenario among all. On the contrary, the reversible-Solid Oxide Fuel Cell maximizes its economic performance only when the self-consumers’ groups incentive is applied. For a complete life cycle cost analysis, environmental impacts are monetized using three different monetization methods with the aim to internalize (considering them into direct cost) the externalities (environmental costs). If externalities are considered as an effective cost, the natural gas Solide Oxide Fuel Cell system increases its saving because its environmental impact is lower than in the base case one, while the reversible-Solid Oxide Fuel Cell system reduces it.


2015 ◽  
Vol 13 (7) ◽  
pp. 730-735
Author(s):  
Wen-Tang Hong ◽  
Ya-Ling Wu ◽  
Tzu-Hsiang Yen ◽  
Cheng-Nan Huang ◽  
Hsueh-I Tan ◽  
...  

2015 ◽  
Vol 81 ◽  
pp. 400-410 ◽  
Author(s):  
Junxi Jia ◽  
Abuliti Abudula ◽  
Liming Wei ◽  
Baozhi Sun ◽  
Yue Shi

2019 ◽  
Vol 233-234 ◽  
pp. 930-942 ◽  
Author(s):  
Zehan Zhang ◽  
Shuanghong Li ◽  
Yawen Xiao ◽  
Yupu Yang

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1985 ◽  
Author(s):  
Alvaro Fernandes ◽  
Joerg Brabandt ◽  
Oliver Posdziech ◽  
Ali Saadabadi ◽  
Mayra Recalde ◽  
...  

This paper describes the steps involved in the design, construction, and testing of a gasifier-specific solid oxide fuel cell (SOFC) system. The design choices are based on reported thermodynamic simulation results for the entire gasifier- gas cleanup-SOFC system. The constructed SOFC system is tested and the measured parameters are compared with those given by a system simulation. Furthermore, a detailed exergy analysis is performed to determine the components responsible for poor efficiency. It is concluded that the SOFC system demonstrates reasonable agreement with the simulated results. Furthermore, based on the exergy results, the components causing major irreversible performance losses are identified.


2019 ◽  
Vol 44 (3) ◽  
pp. 1867-1876 ◽  
Author(s):  
Weizi Cai ◽  
Peipei Liu ◽  
Bin Chen ◽  
Haoran Xu ◽  
Zhijun Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document