scholarly journals Thermal Behaviour of Nanocomposite Phase Change Material for Solar Thermal Applications

Author(s):  
Akram Fadhl Al-Mahmodi ◽  
Lukmon Owolabi Afolabi ◽  
Mohammed Ghaleb Awadh ◽  
Mohammad Faizal Mohideen Batcha ◽  
Nigali Zamani ◽  
...  

The use of solar thermal technologies has shown great prospects towards solar energy conversion into more useful forms of energy and has increasingly expanded solar thermal technology applications. However, the inability to properly store the excess solar energies during peak hours and demands have limited many of their applications. The integration of thermal energy storage (TES) systems with thermal technologies have increased the solar thermal technology performance but the poor thermal characteristics exhibited by phase change materials (PCM) limited the system overall performance. The enhancement of PCM properties by nonadditive have shown increased material performance in TES application and thereby extending the use of solar thermal technology application. Given this narrative and identifies literature gaps, the present study investigated experimentally the enhancement of paraffin PCM using nonadditive metallic of different types and concentrations and analysed their thermal behaviours. The results showed that Cu/paraffin PCM nanocomposites had good thermal reliability in proposed applications even after 150 thermal cycles under different temperatures. Moreover, thermal conductivity was improved significantly as an enhancement of 39% was reported when adding 2.5% of Cu nanoparticles. While specific heat and thermal diffusivity has been enhanced by 16% and 9%, respectively compared to pure paraffin. The obtained results were compared with different theoretical models such as Maxwell mode, Hamilton Crossover model, Jeffery model, and Bruggeman model. The calculated values show a good agreement with experimental ones. As a result, the prepared Cu/Paraffin nanocomposite PCM shows significant promise in thermal energy storage application due to its favourable phase change temperature, comparatively large latent heat, enhanced thermal conductivity and high thermal reliability and conversion. The proposed nanocomposite PCM can be used in many applications such as building materials to reduce interior temperature swings, enhance thermal comfort, and conserve electricity consumption.

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1790
Author(s):  
Francesco Galvagnini ◽  
Andrea Dorigato ◽  
Luca Fambri ◽  
Giulia Fredi ◽  
Alessandro Pegoretti

Syntactic foams (SFs) combining an epoxy resin and hollow glass microspheres (HGM) feature a unique combination of low density, high mechanical properties, and low thermal conductivity which can be tuned according to specific applications. In this work, the versatility of epoxy/HGM SFs was further expanded by adding a microencapsulated phase change material (PCM) providing thermal energy storage (TES) ability at a phase change temperature of 43 °C. At this aim, fifteen epoxy (HGM/PCM) compositions with a total filler content (HGM + PCM) of up to 40 vol% were prepared and characterized. The experimental results were fitted with statistical models, which resulted in ternary diagrams that visually represented the properties of the ternary systems and simplified trend identification. Dynamic rheological tests showed that the PCM increased the viscosity of the epoxy resin more than HGM due to the smaller average size (20 µm vs. 60 µm) and that the systems containing both HGM and PCM showed lower viscosity than those containing only one filler type, due to the higher packing efficiency of bimodal filler distributions. HGM strongly reduced the gravimetric density and the thermal insulation properties. In fact, the sample with 40 vol% of HGM showed a density of 0.735 g/cm3 (−35% than neat epoxy) and a thermal conductivity of 0.12 W/(m∙K) (−40% than neat epoxy). Moreover, the increase in the PCM content increased the specific phase change enthalpy, which was up to 68 J/g for the sample with 40 vol% of PCM, with a consequent improvement in the thermal management ability that was also evidenced by temperature profiling tests in transient heating and cooling regimes. Finally, dynamical mechanical thermal analysis (DMTA) showed that both fillers decreased the storage modulus but generally increased the storage modulus normalized by density (E′/ρ) up to 2440 MPa/(g/cm3) at 25 °C with 40 vol% of HGM (+48% than neat epoxy). These results confirmed that the main asset of these ternary multifunctional syntactic foams is their versatility, as the composition can be tuned to reach the property set that best matches the application requirements in terms of TES ability, thermal insulation, and low density.


Author(s):  
Mohammad Alhuyi Nazari ◽  
Akbar Maleki ◽  
Mamdouh El Haj Assad ◽  
Marc A. Rosen ◽  
Arman Haghighi ◽  
...  

Author(s):  
D. Zhou ◽  
C. Y. Zhao

Phase change materials (PCMs) have been widely used for thermal energy storage systems due to their capability of storing and releasing large amounts of energy with a small volume and a moderate temperature variation. Most PCMs suffer the common problem of low thermal conductivity, being around 0.2 and 0.5 for paraffin and inorganic salts, respectively, which prolongs the charging and discharging period. In an attempt to improve the thermal conductivity of phase change materials, the graphite or metallic matrix is often embedded within PCMs to enhance the heat transfer. This paper presents an experimental study on heat transfer characteristics of PCMs embedded with open-celled metal foams. In this study both paraffin wax and calcium chloride hexahydrate are employed as the heat storage media. The transient heat transfer behavior is measured. Compared to the results of pure PCMs samples, the investigation shows that the additions of metal foams can double the overall heat transfer rate during the melting process. The results of calcium chloride hexahydrate are also compared with those of paraffin wax.


Sign in / Sign up

Export Citation Format

Share Document