thermal reliability
Recently Published Documents


TOTAL DOCUMENTS

256
(FIVE YEARS 58)

H-INDEX

22
(FIVE YEARS 5)

Fluids ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 11
Author(s):  
David Cabaleiro ◽  
Sonia Losada-Barreiro ◽  
Filippo Agresti ◽  
Carolina Hermida-Merino ◽  
Laura Fedele ◽  
...  

This study focuses on the preparation, thermophysical and rheological characterization of phase change material nanoemulsions as latent functionally thermal fluids. Aqueous dispersions with fine droplets of cetyl alcohol (with a melting temperature at ~321 K) were prepared by means of a solvent-assisted method, combining ultrasonication with non-ionic and anionic emulsifiers. Eicosyl alcohol (melting at ~337 K) and hydrophobic silica nanoparticles were tested as nucleating agents. Droplet size studies through time and after freeze–thaw cycles confirmed the good stability of formulated nanoemulsions. Phase change analyses proved the effectiveness of eicosyl alcohol to reduce subcooling to a few Kelvin. Although phase change material emulsions exhibited thermal conductivities much larger than bulk cetyl alcohol (at least 60% higher when droplets are solid), reductions in this property reached 15% when compared to water. Samples mainly showed desirable Newtonian behavior (or slight shear thinning viscosities) and modifications in density around melting transition were lower than 1.2%. In the case of phase change material nanoemulsions with 8 wt.% content of dispersed phase, enhancements in the energy storage capacity overcome 20% (considering an operational temperature interval of 10 K around solid–liquid phase change). Formulated dispersions also showed good thermal reliability throughout 200 solidification–melting cycles.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2027
Author(s):  
Zhimin Liang ◽  
Fei Shen ◽  
Zongyuan Yang ◽  
Da Xu ◽  
Shaowei Wei ◽  
...  

Sn–Sb system solders and ENIG/ENEPIG surface finish layers are commonly used in electronic products. To illustrate the thermal reliability evaluation of such solder joints, we studied the interfacial microstructure and shear properties of Sn-4.5Sb-3.5Bi-0.1Ag/ENIG and Sn-4.5Sb-3.5Bi-0.1Ag/ENEPIG solder joints after aging at 150 °C for 250, 500 and 1000 h. The results show that the intermetallic compound of Sn-4.5Sb-3.5Bi-0.1Ag/ENIG interface was more continuous and uniform compared with that of Sn-4.5Sb-3.5Bi-0.1Ag/ENEPIG interface after reflow. The thickness of the interfacial intermetallic compounds of the former was significantly thinner than that of the latter before and after aging. With extension of aging time, the former interface was stable, while obvious voids appeared at the interface of the latter after 500 h aging and significant fracture occurred after 1000 h aging. The shear tests proved that shear strength of solder joints decreased with increasing aging time. For the Sn-4.5Sb-3.5Bi-0.1Ag/ENEPIG joint after 1000 h aging, the fracture mode is ductile-brittle mixed type, which means fracture could occur at the solder matrix or the solder/IMC interface. For other samples of these two types of joints, ductile fracture occurred inside of the solder. The Sn-4.5Sb-3.5Bi-0.1Ag/ENIG solder joint was thermally more reliable than Sn-4.5Sb-3.5Bi-0.1Ag/ENEPIG.


2021 ◽  
Author(s):  
Keunwoo Kim ◽  
Keeyoung Son ◽  
Seokwoo Hong ◽  
Joungho Kim ◽  
Jinyoung Kim
Keyword(s):  

2021 ◽  
Author(s):  
Shizhao Wang ◽  
Yameng Sun ◽  
Fang Dong ◽  
Lianghao Xue ◽  
Rui Li ◽  
...  

Author(s):  
Akram Fadhl Al-Mahmodi ◽  
Lukmon Owolabi Afolabi ◽  
Mohammed Ghaleb Awadh ◽  
Mohammad Faizal Mohideen Batcha ◽  
Nigali Zamani ◽  
...  

The use of solar thermal technologies has shown great prospects towards solar energy conversion into more useful forms of energy and has increasingly expanded solar thermal technology applications. However, the inability to properly store the excess solar energies during peak hours and demands have limited many of their applications. The integration of thermal energy storage (TES) systems with thermal technologies have increased the solar thermal technology performance but the poor thermal characteristics exhibited by phase change materials (PCM) limited the system overall performance. The enhancement of PCM properties by nonadditive have shown increased material performance in TES application and thereby extending the use of solar thermal technology application. Given this narrative and identifies literature gaps, the present study investigated experimentally the enhancement of paraffin PCM using nonadditive metallic of different types and concentrations and analysed their thermal behaviours. The results showed that Cu/paraffin PCM nanocomposites had good thermal reliability in proposed applications even after 150 thermal cycles under different temperatures. Moreover, thermal conductivity was improved significantly as an enhancement of 39% was reported when adding 2.5% of Cu nanoparticles. While specific heat and thermal diffusivity has been enhanced by 16% and 9%, respectively compared to pure paraffin. The obtained results were compared with different theoretical models such as Maxwell mode, Hamilton Crossover model, Jeffery model, and Bruggeman model. The calculated values show a good agreement with experimental ones. As a result, the prepared Cu/Paraffin nanocomposite PCM shows significant promise in thermal energy storage application due to its favourable phase change temperature, comparatively large latent heat, enhanced thermal conductivity and high thermal reliability and conversion. The proposed nanocomposite PCM can be used in many applications such as building materials to reduce interior temperature swings, enhance thermal comfort, and conserve electricity consumption.


2021 ◽  
pp. 179-189
Author(s):  
Alla Kariuk ◽  
Victor Pashynskyi ◽  
Mykola Pashynskyi ◽  
Fidan Mammadova

Sign in / Sign up

Export Citation Format

Share Document