scholarly journals A High Sensitivity of Vital Signs Detector using Fiber Optic-based Fabry-Perot Interferometer

Author(s):  
Saroj Pullteap ◽  
Piyawat Samartkit

In this paper, a development of high sensitivity for vital sign detector based on the fiber optic-based Fabry-Perot interferometer (FFPI) has been proposed. Two interested parameters; heart rate (HR), and also blood pressure (BP) are measured as the vital sign parameters for investigating the performance of the FFPI. Particularly, the proposed sensor is exploited to detect human arterial pulse for indicating the number of interference signals (fringes). A fringe counting technique is, consequently, applied in associate with the deflection of material technique to demodulate the observed number of fringes into HR and BP. Additionally, the reflective thin film with reflectance of approximately 55% is utilized for attaching to the human wrist during the measurement. Furthermore, a digital sphygmomanometer model OMRON HEM-7130 is employed as a reference sensor. After 20 times of repeatability on the same human subject, the FFPI could indicate the systolic and diastolic BP, as well as HR, with average error of 0.94%, 1.64%, and 1.01%, respectively. Moreover, the FFPI could determine the mentioned parameters in decimal numbers, as opposed to the reference sensor. This could, thus, verified that the FFPI is a very sensitive and more precise instrument for applying to the vital sign measurement.

Author(s):  
Seung-Ho Park ◽  
Kyoung-Su Park

Abstract As the importance of continuous vital signs monitoring increases, the need for wearable devices to measure vital sign is increasing. In this study, the device is designed to measure blood pressure (BP), respiratory rate (RR), and heartrate (HR) with one sensor. The device is in earphone format and is manufactured as wireless type using Arduino-based bluetooth module. The device measures pulse signal in the Superficial temporal artery using Photoplethysmograghy (PPG) sensor. The device uses the Auto Encoder to remove noise caused by movement, etc., contained in the pulse signal. Extract the feature from the pulse signal and use them for the vital sign measurement. The device is measured using Slope transit time (STT) method for BP and Respiratory sinus arrhythmia (RSA) method for RR. Finally, the accuracy is determined by comparing the vital signs measured through the device with the reference vital signs measured simultaneously.


2022 ◽  
pp. 113375
Author(s):  
Xiaoli Zhang ◽  
Xinlei Zhou ◽  
Shuo Wang ◽  
Pengcheng Tao ◽  
Fengxiang Ma ◽  
...  

2018 ◽  
Vol 18 (12) ◽  
pp. 4879-4885 ◽  
Author(s):  
Bo Wang ◽  
Jiajun Tian ◽  
Ling Hu ◽  
Yong Yao

2012 ◽  
Vol 51 ◽  
pp. 06FL10 ◽  
Author(s):  
Xuefeng Li ◽  
Shuo Lin ◽  
Jinxing Liang ◽  
Hiroshi Oigawa ◽  
Toshitsugu Ueda

2012 ◽  
Vol 51 (6S) ◽  
pp. 06FL10 ◽  
Author(s):  
Xuefeng Li ◽  
Shuo Lin ◽  
Jinxing Liang ◽  
Hiroshi Oigawa ◽  
Toshitsugu Ueda

1996 ◽  
Vol 21 (8) ◽  
pp. 615 ◽  
Author(s):  
T. W. Kao ◽  
H. F. Taylor

2014 ◽  
Vol 206 ◽  
pp. 144-150 ◽  
Author(s):  
Daniele Tosi ◽  
Sven Poeggel ◽  
Gabriel Leen ◽  
Elfed Lewis

2014 ◽  
Author(s):  
Sven Poeggel ◽  
Daniele Tosi ◽  
Dineshbabu Duraibabu ◽  
James Kelly ◽  
Maria Munroe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document