Lateral Position Measurement System for Precision Alignment of Roll-to-Roll Printing Using Alignment Patterns and Quantity of Light

2015 ◽  
Vol 39 (9) ◽  
pp. 879-884
Author(s):  
Minkyu Jung ◽  
Hyungi Kim ◽  
Dongho Oh
Author(s):  
Taehyeong Kim ◽  
Dongho Oh ◽  
Youngjin Kim ◽  
Jihyeon Kim ◽  
Byeongcheol Lee

Printed electronics is a next-generation process technology that is suitable for high speed and high volume production and can make electronic devices and circuits on flexible materials. To commercialize printed electronics, it is necessary to improve the alignment precision of printing. In order to improve the alignment precision of the roll-to-roll process, accurate measurement of the web position is required. Therefore, in the previous research of this paper, we proposed a measurement system of the moving direction and the lateral movement using an encoder. However, in the previous study, the direction of error control had to be set according to the measurement position of the encoder, and the measurement range was so narrow. In this paper, we propose a measurement system that can detect the direction of error and increase the effective measurement range using the burst alignment pattern that generates the burst signal. Applying it to roll-to-roll printing position measurement systems, measurements can be performed with greatly improved efficiency and measurement range.


2019 ◽  
Vol 26 (1) ◽  
pp. 231-238
Author(s):  
Taehyeong Kim ◽  
Youngjin Kim ◽  
Jihyeon Kim ◽  
Byeongcheol Lee ◽  
Jimin Park ◽  
...  

Author(s):  
Chung Hwan Kim ◽  
Ha-Il You ◽  
Seung-Hyun Lee

The manufacture of printed electronics by roll-to-roll printing machine requires more accurate register performance than conventional media printing technology. Moreover, high drying temperature and long drying time to sinter the inks can induce the substantial changes in the length of the substrate and consequently register errors. Among the roll-to-roll printing methods, the gravure one, despite its relatively fast productivity and fine-line printing capacity, has difficulty in achieving the required register specifications for printed electronics because of the dependence of the register control on web dynamics. This study proposes a roll-to-roll gravure-offset printing equipment, including the register measurement system designed to enhance register performance and the related register control method for the application of printed electronics. Each cylinder constituting the printing unit is driven independently by an individual servomotor. Moreover, the printing patterns of the plate cylinder can move in the axial direction by position control, as well as in the web transport direction by a phase shift of the plate cylinder, without affecting the dynamics of the web. The time difference between the measurement and the actual control action is considered and modeled. The register measurement system, including selections of sensors and marks is also proposed to consider the effect of the time difference. The simulation results and the experiments of the register control are shown to verify the effect of the time difference on the control performances. It is found that a proper estimation of time difference should be obtained in order to guarantee more accurate and stable control performances.


Optik ◽  
2016 ◽  
Vol 127 (8) ◽  
pp. 3964-3968 ◽  
Author(s):  
Yongming Bian ◽  
Xiaojun Fang ◽  
Meng Yang ◽  
Jixiang Yang

Sign in / Sign up

Export Citation Format

Share Document