scholarly journals Formulation and Evaluation of Parenteral Sustained Release Microspheres of Diclofenac Sodium

2003 ◽  
Vol 71 (2) ◽  
pp. 101-111
Author(s):  
C. Sajeev ◽  
R. Archna ◽  
V. Gupta ◽  
A. Sobti ◽  
R. Saha

The aim of this study was to formulate and evaluate microsphere based depot type parenteral sustained release formulation of diclofenac sodium (DFS). Drug was formulated in the form of microspheres, using varying proportion of ethylcellulose (EC) as the retardant material to extend the release, by phase separation-coacervation technique. The in vitro release pattern of the designed formulations was studied using modified Franz diffusion cell. In vivo pharmacodynamic study was carried out by determining the index of analgesia (increase in response time to thermal stress as percentage of basal response time). Tail flick method was employed to measure both the degree of analgesia and its duration of action. The prepared microspheres were white, free flowing, and spherical in shape with a mean particle size of 50 μm. In vitro release study of the micro-spheres in aqueous media was found to extend the release of DFS beyond 24 hours with DFS and EC ratio 1:3. The plot of log percentage remaining to be released vs. time gave a linear relationship indicating first-order release kinetics. The in vitro release rate constant (Kr) for different microspheres varied between 0.1448 hr-1 and 0.0256 hr-1. A good correlation was obtained between K, and proportion of EC in the microspheres. In vivo pharmacodynamic studies indicated that the duration of analgesic action is prolonged beyond 24 hrs in case of microsphere products of 1:3 ratio of DFS to EC, whereas administration of marketed parenteral preparation showed activity only up to 11hrs. Also, a good correlation was obtained between analgesic activity in vivo and cumulative percentage of drug release from the formulations.

Author(s):  
Nagratna Dhople ◽  
P N Dandag ◽  
A P Gadad ◽  
C K Pandey ◽  
Masthiholimath V S

A gastroretentive sustained release system of itopride hydrochloride was formulated to increase the gastric residence time and modulate its release behavior. Itopride hydrochloride is a prokinetic drug used in the treatment of gastroeosophageal reflux disease, Non-ulcer dyspepsia and as an antiemetic. Hence, itopride hydrochloride beads were prepared by emulsion gelation method by employing low methoxy pectin and sodium alginate as sustained release polymers in three different ratios alone and in combination and sunflower oil was used to enable floating property to the beads. The effect of variation in polymer and their concentration was investigated. The beads were evaluated for production yield, particle size, swelling index, density measurement, buoyancy, drug content, drug entrapment efficiency, in vitro release characteristics and release kinetic study. Based on drug entrapment efficiency, buoyancy, swelling and in vitro release, F9 was selected as the optimized formulation. F9 was further subjected to surface morphology by SEM, in vitro release comparison with marketed formulation, in vivo floating study in rabbits and stability study for 90 days. In vitro release follows zero order and fitted in Korsmeyer peppas model (Non-Fickian release). Therefore, the rate of drug release is due to the combined effect of drug diffusion and polymer swelling. The in vivo X-ray studies revealed that the beads were floating in the rabbit stomach up to 10 hours. Thus, it was concluded that the sustained release formulation containing itopride hydrochloride was found to improve patient compliance, minimize the side effects and decrease the frequency of administration.


2016 ◽  
Vol 12 (25) ◽  
pp. 5679-5699
Author(s):  
K.Sathish Kumar ◽  
C. Kumaresan ◽  
R. Anantharaj

The present work was designed to develop and compare orally inhalable sustained release formulation for salbutamol sulphate (SS), ambroxol hydrochloride (AH) and montelukast sodium (MS).The emulsion solvent evaporation method was used to prepare microparticles with the polymers. The prepared polymer encapsulated microparticles were blended with carrier inhalable lactose and filled in size 3 hard empty gelatin capsule. Formulations T1-T9 were prepared with 1:1 ratio of PLGA (50:50), PLGA (75:25) and Eudragit RS100. The formulation T1 prepared with SS:PLGA (50:50) produces best result when compared with other formulations T2-T9. Formulation T1 gives in vitro release 91.23% at 12 h and having particle size of microparticles (D0.5 µm) 1.94±0.6 and respiratory fraction 34.9± 2.59 %.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 168
Author(s):  
Md. Khalid Anwer ◽  
Essam A. Ali ◽  
Muzaffar Iqbal ◽  
Mohammed Muqtader Ahmed ◽  
Mohammed F. Aldawsari ◽  
...  

Baricitinib (BTB) is an orally administered Janus kinase inhibitor, therapeutically used for the treatment of rheumatoid arthritis. Recently it has also been approved for the treatment of COVID-19 infection. In this study, four different BTB-loaded lipids (stearin)-polymer (Poly(d,l-lactide-co-glycolide)) hybrid nanoparticles (B-PLN1 to B-PLN4) were prepared by the single-step nanoprecipitation method. Next, they were characterised in terms of physicochemical properties such as particle size, zeta potential (ζP), polydispersity index (PDI), entrapment efficiency (EE) and drug loading (DL). Based on preliminary evaluation, the B-PLN4 was regarded as the optimised formulation with particle size (272 ± 7.6 nm), PDI (0.225), ζP (−36.5 ± 3.1 mV), %EE (71.6 ± 1.5%) and %DL (2.87 ± 0.42%). This formulation (B-PLN4) was further assessed concerning morphology, in vitro release, and in vivo pharmacokinetic studies in rats. The in vitro release profile exhibited a sustained release pattern well-fitted by the Korsmeyer–Peppas kinetic model (R2 = 0.879). The in vivo pharmacokinetic data showed an enhancement (2.92 times more) in bioavailability in comparison to the normal suspension of pure BTB. These data concluded that the formulated lipid-polymer hybrid nanoparticles could be a promising drug delivery option to enhance the bioavailability of BTB. Overall, this study provides a scientific basis for future studies on the entrapment efficiency of lipid-polymer hybrid systems as promising carriers for overcoming pharmacokinetic limitations.


2020 ◽  
Vol 55 ◽  
pp. 101355 ◽  
Author(s):  
D. Nagasamy Venkatesh ◽  
S.N. Meyyanathan ◽  
R. Shanmugam ◽  
A. Zielinska ◽  
J.R. Campos ◽  
...  

2018 ◽  
Vol 21 (1) ◽  
pp. 24-34
Author(s):  
K Latha ◽  
T Chinni Kranthi ◽  
Naseeb Basha Shaik

The present study is based on preparation of sustained release matrix tablets of tolterodine tartrate (for overactive bladder treatment) using guggul resin. Tolterodine tartrate is a highly soluble drug, to increase the duration of action the release of the drug has to be sustained. Natural resin is used as a polymer to sustain the release of drug, which was isolated from guggul gum by petroleum ether. Natural polymers are economical, biodegradable and can be chemically modified. Different ratios of drug and guggul resin were tried in the formulation of sustained release matrix tablets of tolterodine tartrate. Wet granulation technique was adopted for preparation of tolterodine tartrate granules, showed good flow properties and compressibility. The fabricated tablets were evaluated for various physicochemical characteristics and in vitro release studies like hardness, thickness, weight variation, friability, drug content and content uniformity were found to be within the limits. The drug release of optimized formulation (F6) was fitted to various kinetic models and the R2 value is 0.988 and the n value of drug release is 0.787. Therefore, the drug release follows zero order with non-fickian diffusion. The mechanism of drug release involves erosion and diffusion. Stability studies were performed for the optimized formulation as per ICH guidelines climatic zone III and were found to be stable with insignificant changes in physicochemical characteristics and in vitro release studies.Bangladesh Pharmaceutical Journal 21(1): 24-34, 2018


1987 ◽  
Vol 57 (02) ◽  
pp. 201-204 ◽  
Author(s):  
P Y Scarabin ◽  
L Strain ◽  
C A Ludlam ◽  
J Jones ◽  
E M Kohner

SummaryDuring the collection of samples for plasma β-thromboglobulin (β-TG) determination, it is well established that artificially high values can be observed due to in-vitro release. To estimate the reliability of a single β-TG measurement, blood samples were collected simultaneously from both arms on two separate occasions in 56 diabetic patients selected for a clinical trial. From each arm, blood was taken into two tubes containing an anticoagulant mixture with (tube A) and without (tube B) PGE!. The overall mean value of B-TG in tube B was 1.14 times higher than in tube A (p <0.01). The markedly large between-arms variation accounted for the most part of within-subject variation in both tubes and was significantly greater in tube B than in tube A. Based on the difference between B-TG values from both arms, the number of subjects with artifically high B-TG values was significantly higher in tube B than in tube A on each occasion (overall rate: 28% and 14% respectively). Estimate of between-occasions variation showed that B-TG levels were relatively stable for each subject between two occasions in each tube. It is concluded that the use of PGEi decreases falsely high B-TG levels, but a single measurement of B-TG does not provide a reliable estimate of the true B-TG value in vivo.


Sign in / Sign up

Export Citation Format

Share Document