scholarly journals Mathematical modeling of transfer intensive of edges of spatial cracks on the fronts of longitudinal and shear waves by a ray method

Author(s):  
Мария Игоревна Быкова ◽  
Николай Дмитриевич Вервейко ◽  
Светлана Евгеньевна Крупенко ◽  
Александр Иванович Шашкин ◽  
Софья Александровна Шашкина

В ближайшей окрестности вершины плоской трещины, а в общем случае, вблизи передней кромки пространственной трещины, деформирование материала носит неупругий характер. В работе предложено лучевое моделирование высокоскоростного деформирования материала в δ-окрестности подвижной передней кромки трещины, используя динамическую упруговязкопластическую модель тела Бингама с условием пластичности Мизеса. Показано, что распространяющаяся передняя кромка трещины продольного сдвига лежит на поверхности сильного разрыва продольной скорости, бегущей со скоростью упругих продольных волн, а передняя кромка трещины отрыва и трещины поперечного сдвига лежит на поверхности сдвиговой волны, бегущей со скоростью волн сдвига. Введены интенсивности передних кромок трещин: скачок скорости сдвига поперек передней кромки трещины продольного сдвига, скачок поперечной скорости на передней кромке трещины отрыва, скачок касательной скорости к передней кромке трещины поперечного сдвига. Построены обыкновенные дифференциальные уравнения переноса интенсивностей передних кромок трещин вдоль лучей как ортогональных траекторий точек переднего фронта. Получены приближенные решения уравнений переноса интенсивностей передних кромок пространственных трещин в напряженный материал и приведены выражения для глубины проникания пространственных трещин. Показано изменение направления сдвига и отрыва в передних кромках соответствующих трещин в зависимости от напряженного состояния перед трещинами. Приведены графики численных расчетов переноса интенсивностей передних кромок трещин и глубины их проникания. In the near neighborhood of the top of the plane crack, and in General, in the space case, near the edge of the spatial crack, the deformations of the material have the inelastic character. In this article proposes the elasticviscoplastic model of the Bingham body with the condition of plasticity of Mises for modeling high velocity deformation material near of the top of crack. Shown that an edge of crack belong a surface of elastic wave: cracks of longitudinal shear belong of longitudinal wave and a crack of untiplane shear and avulsion belong a surface of shear wave. For intensity of the crack suggest a shock velocity on the curve of the edge of crack and made ordinary differential equation for transfer intensity of crack on the front of the wave. Shown that a distant of propagation edge of the crack depend from plastic deformation material on the front of the wave. In the process of propagation crack this direction of shear can change from a stresses in front of the wave. Three-D graphics show change intensity of the crack in a process of propagation from parameters.

2021 ◽  
Author(s):  
GUEYE cheikh ◽  
TOUMBOU Babacar ◽  
DIOUF Abdoulaye

Abstract The purpose of this work is to develop tools and techniques for modeling the capture of the Demographic Dividend. We presented the ordinary differential equation (ODE) system modeling the variation of economically dependent and economically non dependent populations. The system uses natality, natural mortality, infant mortality, migration (incoming and outgoing), and transfers. The mathematical study of this ODE system shows the existence of an equilibrium point whose stability depends on a certain number of system parameters. Numerical simulations of the resulting model were performed using scenarios approach.


Author(s):  
Razvan Gabriel Iagar ◽  
Philippe Laurençot

A classification of the behaviour of the solutions f(·, a) to the ordinary differential equation (|f′|p-2f′)′ + f - |f′|p-1 = 0 in (0,∞) with initial condition f(0, a) = a and f′(0, a) = 0 is provided, according to the value of the parameter a > 0 when the exponent p takes values in (1, 2). There is a threshold value a* that separates different behaviours of f(·, a): if a > a*, then f(·, a) vanishes at least once in (0,∞) and takes negative values, while f(·, a) is positive in (0,∞) and decays algebraically to zero as r→∞ if a ∊ (0, a*). At the threshold value, f(·, a*) is also positive in (0,∞) but decays exponentially fast to zero as r→∞. The proof of these results relies on a transformation to a first-order ordinary differential equation and a monotonicity property with respect to a > 0. This classification is one step in the description of the dynamics near the extinction time of a diffusive Hamilton–Jacobi equation with critical gradient absorption and fast diffusion.


Sign in / Sign up

Export Citation Format

Share Document