scholarly journals Genetic variability and heritability for quantitative traits in China aster (Callistephus chinensis (L.) Nees.)

2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Vijay Pratap ◽  
Vijay Sharma ◽  
Kamaluddin . ◽  
Gaurav Shukla

Background: Assessment of genetic variability and inter-relationship between the characters can be used in the breeding programme to evolve new varieties with wide genetic diversity to maximize the yield potential in crop improvement programmes. Eighty-four field pea genotypes were evaluated in an augmented block design for thirteen quantitative traits to study variance components, heritability, genetic advance and inter-relationship between the yield and yield contributing traits. Methods: The extent of phenotypic and genotypic variation that exist in a character was calculated by the formula suggested by Burton and de Vane (1953). Heritability in broad sense and genetic advance as per cent of mean for each character was computed using the formula suggested by Hanson et al. (1956) and Johnson et al. (1955), respectively. Correlation coefficient was calculated by method suggested by Searle (1961) and path coefficient analysis done as per method of Wright (1921) and elaborated by Dewey and Lu (1959).Result: Significant differences observed among the genotypes tested for the yield characters indicated the presence of variability. High heritability coupled with high genetic advance as percent of mean was observed for the traits viz., plant height, effective pods plant-1, harvest index and seed yield plant-1 were governed by additive gene effects which will aid in effective selection. Correlation coefficient analysis revealed that seed yield plant-1 had highly significant and positive correlation with biological yield plant-1, effective pods plant-1, harvest index, seeds pods-1 and effective nodes plant-1, indicating that these traits are strongly associated with seed yield in field pea. Path coefficient analysis identified biological yield plant-1 followed by harvest index, seed pod-1, effective nodes plant-1, 100-seed weight and day to 50% flowering as highly desirable components with great direct effects on seed yield. 


2019 ◽  
Vol 10 (1) ◽  
pp. 293
Author(s):  
I. Mariyammal ◽  
M. Pandiyan ◽  
C. Vanniarajan ◽  
J. S. Kennedy ◽  
N. Senthil

2018 ◽  
Vol 0 (1) ◽  
pp. 81-86
Author(s):  
Володимир Миколайович Гудзенко ◽  
Олена Сергіївна Дем’янюк

2014 ◽  
Vol 131 (3) ◽  
pp. 183-193 ◽  
Author(s):  
R. Abdollahi-Arpanahi ◽  
A. Pakdel ◽  
A. Nejati-Javaremi ◽  
M. Moradi Shahrbabak ◽  
G. Morota ◽  
...  

2007 ◽  
Vol 89 (2) ◽  
pp. 107-122 ◽  
Author(s):  
MOUNAWER BADRI ◽  
HOUCINE ILAHI ◽  
THIERRY HUGUET ◽  
MOHAMED ELARBI AOUANI

SummaryMedicago laciniata is restricted to south of the Mediterranean basin and it extends in Tunisia from the inferior semi-arid to Saharan stages, whereas M. truncatula is a widespread species in such areas. The genetic variability in four Tunisian sympatric populations of M. laciniata and M. truncatula was analysed using 19 quantitative traits and 20 microsatellites. We investigated the amplification transferability of 52 microsatellites developed in M. truncatula to M. laciniata. Results indicate that about 78·85% of used markers are valuable genetic markers for M. laciniata. M. laciniata displayed significantly lower quantitative differentiation among populations (QST=0·12) than did M. truncatula (QST=0·45). However, high molecular differentiations, with no significant difference, were observed in M. laciniata (FST=0·48) and M. truncatula (FST=0·47). Several quantitative traits exhibited significantly smaller QST than FST for M. laciniata, consistent with constraining selection. For M. truncatula, the majority of traits displayed no statistical difference in the level of QST and FST. Furthermore, these traits are significantly associated with eco-geographical factors, consistent with selection for local adaptation rather than genetic drift. In both species, there was no significant correlation between genetic variation at quantitative traits and molecular markers. The site-of-origin explains about 5·85% and 11·27% of total quantitative genetic variability among populations of M. laciniata and M. truncatula, respectively. Established correlations between quantitative traits and eco-geographical factors were generally more moderate for M. laciniata than for M. truncatula, suggesting that the two species exhibit different genetic bases of local adaptation to varying environmental conditions. Nevertheless, no consistent patterns of associations were found between gene diversity (He) and environmental factors in either species.


Sign in / Sign up

Export Citation Format

Share Document