scholarly journals A Novel Calibration Method Research of the Scale Factor for the All-optical Atomic Spin Inertial Measurement Device

2015 ◽  
Vol 19 (4) ◽  
pp. 415-420 ◽  
Author(s):  
Sheng Zou ◽  
Hong Zhang ◽  
Xi-yuan Chen ◽  
Yao Chen ◽  
Jian-cheng Fang
Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3568 ◽  
Author(s):  
Wang ◽  
Cheng ◽  
Fu

Navigation grade inertial measurement units (IMUs) should be calibrated after Inertial Navigation Systems (INSs) are assembled and be re-calibrated after certain periods of time. The multi-position calibration methods with advantage of not requiring high-precision equipment are widely discussed. However, the existing multi-position calibration methods for IMU are based on the model of linear scale factors. To improve the precision of INS, the nonlinear scale factors should be calibrated accurately. This paper proposes an optimized multi-position calibration method with nonlinear scale factor for IMU, and the optimal calibration motion of IMU has been designed based on the analysis of sensitivity of the cost function to the calibration parameters. Besides, in order to improve the accuracy and robustness of the optimization, an estimation method on initial values is presented to solve the problem of setting initial values for iterative methods. Simulations and experiments show that the proposed method outperforms the calibration method without nonlinear scale factors. The navigation accuracy of INS can be improved by up to 17% in lab conditions and 12% in the moving vehicle experiment, respectively.


2013 ◽  
Vol 662 ◽  
pp. 717-720 ◽  
Author(s):  
Zhen Yu Zheng ◽  
Yan Bin Gao ◽  
Kun Peng He

As an inertial sensors assembly, the FOG inertial measurement unit (FIMU) must be calibrated before being used. The paper presents a one-time systematic IMU calibration method only using two-axis low precision turntable. First, the detail error model of inertial sensors using defined body frame is established. Then, only velocity taken as observation, system 33 state equation is established including the lever arm effects and nonlinear terms of scale factor error. The turntable experiments verify that the method can identify all the error coefficients of FIMU on low-precision two-axis turntable, after calibration the accuracy of navigation is improved.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Hong Zhang ◽  
Sheng Zou ◽  
Xi-Yuan Chen ◽  
Wei Quan

The ultrahigh sensitivity atomic spin magnetometer as the magnetic measurement sensor has received much concern. The performance of the magnetic shielding cylinder is one of the key factors constraining the atomic spin magnetometer’s sensitivity. In order to effectively improve the performances of the magnetic shielding, the parameter optimization models of the magnetic shielding cylinder were established in this paper. Under the condition of changing only one parameter while the others keeping constant, the effects of various parameters influencing the axial shielding coefficient were comprehensively analyzed, and the results showed that the smaller the innermost length, the innermost radius, and the radial spacing were, and the greater the axial spacing was, the better the shielding performance could be obtained. According to these results and the actual needs, the magnetic shielding cylinder was optimally designed, and then the shielding effects were simulated via the software Ansoft. The simulation results showed that the optimized magnetic shielding cylinder had the advantages of small size, high shielding performance, and lager uniformity than that of the nonoptimized one. The actual measurement results showed that the residual magnetism in the optimized magnetic shielding cylinder was below 0.1 nT, which was 2~4 times lower than the nonoptimized one.


2005 ◽  
Vol 295-296 ◽  
pp. 589-594
Author(s):  
J.P. Wang ◽  
W. Zhou ◽  
W.F. Tian ◽  
Z.H. Jin

This paper describes the design of an intelligent multi-gyro measurement device to measure and monitor an inertial unit composed of three dynamically tuned gyros (DTGs). A 16-bit microprogrammed control unit is programmed to fulfill the functions of signal processing, logic control and serial communication with a master computer. An FPGA, designed by using Verilog Hardware Description Language, is used to realize high speed 16-bit reversible counters for output pulses of the DTG digital dynamic balance circuits. The count values represent the angular motion of the inertial unit. A stepping electric bridge is employed to measure the resistance of thermal resistors within the gyros in a wide temperature environment. The resistance represents the working temperature of the gyros. An effective calibration method for the bridge is developed to eliminate the resistance measurement error. A test system is established to examine whether the device meets the user requirements. Results of the tests show that the device has a good performance. A trial use has proved that the device is stable and reliable and that it satisfies the demand of the user.


2021 ◽  
Author(s):  
Jinghua Zhang ◽  
Rui He ◽  
Jian Wu ◽  
Shuai Li ◽  
Xuesong Chen ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Vadym Avrutov

The scalar method of fault diagnosis systems of the inertial measurement unit (IMU) is described. All inertial navigation systems consist of such IMU. The scalar calibration method is a base of the scalar method for quality monitoring and diagnostics. In accordance with scalar calibration method algorithms of fault diagnosis systems are developed. As a result of quality monitoring algorithm verification is implemented in the working capacity monitoring of IMU. A failure element determination is based on diagnostics algorithm verification and after that the reason for such failure is cleared. The process of verifications consists of comparison of the calculated estimations of biases, scale factor errors, and misalignments angles of sensors to their data sheet certificate, kept in internal memory of computer. As a result of such comparison the conclusion for working capacity of each IMU sensor can be made and also the failure sensor can be determined.


2011 ◽  
Vol 80-81 ◽  
pp. 1140-1144
Author(s):  
Yu Bao Fan ◽  
Jie Li ◽  
Bo Wang ◽  
Xiao Chun Tian ◽  
Jun Liu

When the Micro Inertial Measurement Unit is been placed randomly in the case of stationary, the sum vectors that measured by the inertial devices configured orthogonally along three axis, are constant vectors. In view of the above objective facts, a field calibration method of micro inertial measurement unit was proposed. On the base of the establishment and optimization of calibration model, all parameters to be calibrated can be obtained through the least square by the ellipsoid fitting, with the result of high-precision field calibration for micro inertial measurement unit. Finally, a filed calibration program for micro inertial measurement unit is scheduled reasonably. The experiment results show that the method has such characteristics such as easily-operation, time-saving, higher calibration accuracy, and not depending on the baseline direction and datum offered by precision instruments. Especially, it fits for inertial measurement systems which work short time and ask for high accuracy. In addition, it can also significantly increase the measurement accuracy of micro inertial measurement system in practical application.


Sign in / Sign up

Export Citation Format

Share Document