scholarly journals Effect of Dissolved Gas on Bubble Behavior and Heat Transfer in Forced Flow Boiling

Author(s):  
Hiroaki NARAZAKI ◽  
Satoshi MATSUMOTO ◽  
Akiko KANEKO ◽  
Yutaka ABE
2020 ◽  
Vol 2020 (0) ◽  
pp. 16B01
Author(s):  
Hiroaki NARAZAKI ◽  
Satoshi MATSUMOTO ◽  
Yutaka ABE ◽  
Akiko KANEKO

1999 ◽  
Author(s):  
Yasuo Koizumi ◽  
Hiroyasu Ohtake ◽  
Manabu Mochizuki

Abstract The effect of solid particle introduction on subcooled-forced flow boiling heat transfer and a critical heat flux was examined experimentally. In the experiment, glass beads of 0.6 mm diameter were mixed in subcooled water. Experiments were conducted in a range of the subcooling of 40 K, a velocity of 0.17–6.7 m/s, a volumetric particle ratio of 0–17%. When particles were introduced, the growth of a superheated liquid layer near a heat trasnsfer surface seemed to be suppressed and the onset of nucleate boiling was delayed. The particles promoted the condensation of bubbles on the heat transfer surface, which shifted the initiation of a net vapor generation to a high heat flux region. Boiling heat trasnfer was augmented by the particle introduction. The suppression of the growth of the superheated liquid layer and the promotion of bubble condensation and dissipation by the particles seemed to contribute that heat transfer augmentation. The wall superheat at the critical heat flux was elevated by the particle introduction and the critical heat flux itself was also enhanced. However, the degree of the critical heat flux improvement was not drastic.


2005 ◽  
Author(s):  
Liang-Ming Pan ◽  
Chuan He ◽  
Ming-Dao Xin ◽  
Tien-Chien Jen ◽  
Qinghua Chen

Compared with conventional channels, narrow and micro channels have significant heat transfer enhancement characteristic. With smooth internal surface, such channels can efficiently avoid encrustation at the washing of the high-speed liquid. Moreover, heat transfer elements can be easily assembled. These types of channels have been adopted extensively in many engineering applications, e.g. microelectronic cooling, advanced nuclear reactor, cryogenic, aviation and space technology and thermal engineering. Geometrical size of flow passage-away affects heat exchange of flow boiling, with the result that the bubble in narrow channel acts very different from those in non-narrow channel. This paper experimentally compared the bubble behavior with different heating methods of narrow rectangular channels, and the bubble behavior of subcooled flow boiling of R-12 in the narrow channels both with double side and single heating. Experimental settings are: the heating length of test-section is 400 mm, the cross-section is 35 mm in width and 2mm in gap size, mass flux is 700∼1500 kg.m−2.s−1, the heat flux is 25∼70kW.m−2 and the pressure is 1.3∼2.0 MPa. Comparisons were made on Onset of Nucleate Boiling (ONB) point and bubble characters with various flow patterns. Results revealed that the characteristics of double and single side heating shown good agreement with proper modifications.


Author(s):  
Dae W. Kim ◽  
Emil Rahim ◽  
Avram Bar-Cohen ◽  
Bongtae Han

The thermofluid characteristics of a chip-scale microgap cooler, including single-phase flow of water and FC-72 and flow boiling of FC-72, are explored. Heat transfer and pressure drop results for single phase water are used to validate a detailed numerical model and, together with the convective FC-72 data, establish a baseline for microgap cooler performance. Experimental results for single phase water and FC-72 flowing in 120 μm, 260 μm and 600 μm microgap coolers, 31mm wide by 34mm long, at velocities of 0.1 – 2 m/s are reported. “Pseudo-boiling” driven by dissolved gas and flow boiling of FC-72 are found to provide significant enhancement in heat transfer relative to theoretical single phase values.


Author(s):  
Zachary Edel ◽  
Abhijit Mukherjee

The preferable cooling solution to the problem of thermal management of modern electronics for increasing power dissipation could be micro heat exchangers based on forced flow boiling. Nanoparticle deposition can affect nucleate boiling heat transfer coefficient via alteration of surface thermal conductivity, roughness, capillary wicking, wettability, and nucleation site density. It can also affect heat transfer by changing bubble departure diameter, bubble departure frequency, and the evaporation of the micro and macrolayer beneath the growing bubbles. In this study, flow boiling was investigated using degassed, deionized water, and 0.001 vol% aluminum oxide nanofluids in a single rectangular brass microchannel for one inlet fluid temperature of 63°C, one flow rate of Re = 100, and two heat fluxes of 130 kW/m2 and 300 kW/m2. High speed images were taken periodically for water and after durations of 25, 75, and 125 minutes of nanofluid flow boiling. The change in regime timing revealed the effect of nanoparticle suspension and nanoparticle deposition on the Onset of Nucelate Boiling (ONB) and the Onset of Bubble Elongation (OBE). Single phase flows at the channel outlet were recorded and compared for different durations of nanofluid flow boiling. The addition of nanoparticles was found to stabilize bubble nucleation and growth and increase heat transfer in the thin film regions of the evaporating menisci.


Author(s):  
Nurudeen O. Olayiwola ◽  
S. Mostafa Ghiaasiaan

Cooling systems that consist of mini-channels (channels with hydraulic diameters in the 0.5 mm to 2.0 mm range) and micro-channels (channels with hydraulic diameters in the 100 μm-500 μm range) can dispose of large volumetric thermal loads that are well beyond the feasible range of conventional cooling methods. Mini/micro-channel systems that utilize boiling fluids are particularly useful due to the superiority of boiling heat transfer mode over single-phase flow convention. Flowing boiling in mini and micro channels has been investigated experimentally by several research groups recently, and a number of empirical correlations have been developed, usually based on only a single set of experimental data. In this study, the capability of a number of widely used forced flow boiling correlations for application to mini channels is examined by comparing their predictions with experimental data from three separate sources. The tested correlations include well-established methods for conventional boiling systems, as well as correlations recently proposed for mini-channels. The experimental data all represent mini-channels. Based on these comparisons, the most accurate existing predictive methods for the tested mini-channel boiling data are identified.


Sign in / Sign up

Export Citation Format

Share Document