scholarly journals Effects of stand age on litter quality, decomposition rate and nutrient release of Kazdagi fir (Abies nordmanniana subsp. equi-trojani)

2020 ◽  
Vol 13 (1) ◽  
pp. 396-403
Author(s):  
G Savaci ◽  
T Sariyildiz
1998 ◽  
Vol 6 (1) ◽  
pp. 1-12 ◽  
Author(s):  
M Francesca Cotrufo ◽  
Björn Berg ◽  
Werner Kratz

There is evidence that N concentration in hardwood leaf litter is reduced when plants are raised in an elevated CO2 atmosphere. Reductions in the N concentration of leaf litter have been found for tree species raised under elevated CO2, with reduction in N concentration ranging from ca. 50% for sweet chestnut (Castanea sativa) to 19% for sycamore (Acer platanoides). However, the effects of elevated CO2 on the chemical composition of litter has been investigated only for a limited number of species. There is also little information on the effects of increased CO2 on the quality of root tissues. If we consider, for example, two important European forest ecosystem types, the dominant species investigated for chemical changes are just a few. Thus, there are whole terrestrial ecosystems in which not a single species has been investigated, meaning that the observed effects of a raised CO2 level on plant litter actually has a large error source. Few reports present data on the effects of elevated CO2 on litter nutrients other than N, which limits our ability to predict the effects of elevated CO2 on litter quality and thus on its decomposability. In litter decomposition three separate steps are seen: (i) the initial stages, (ii) the later stages, and (iii) the final stages. The concept of "substrate quality," translated into chemical composition, will thus change between early stages of decomposition and later ones, with a balanced proportion of nutrients (e.g., N, P, S) being required in the early decomposition phase. In the later stages decomposition rates are ruled by lignin degradation and that process is regulated by the availability of certain nutrients (e.g., N, Mn), which act as signals to the lignin-degrading soil microflora. In the final stages the decomposition comes to a stop or may reach an extremely low decomposition rate, so low that asymptotic decomposition values may be estimated and negatively related to N concentrations. Studies on the effects of changes in chemical composition on the decomposability of litter have mainly been made during the early decomposition stages and they generally report decreased litter quality (e.g., increased C/N ratio), resulting in lower decomposition rates for litter raised under elevated CO2 as compared with control litter. No reports are found relating chemical changes induced by elevated CO2 to litter mass-loss rates in late stages. By most definitions, at these stages litter has turned into humus, and many studies demonstrated that a raising of the N level may suppress humus decomposition rate. It is thus reasonable to speculate that a decrease in N levels in humus would accelerate decomposition and allow it to proceed further. There are no experimental data on the long-term effect of elevated CO2 levels, and a decrease in the storage of humus and nutrients could be predicted, at least in temperate and boreal forest systems. Future works on the effects of elevated CO2 on litter quality need to include studies of a larger number of nutrients and chemical components, and to cover different stages of decomposition. Additionally, the response of plant litter quality to elevated CO2 needs to be investigated under field conditions and at the community level, where possible shifts in community composition (i.e., C3 versus C4 ; N2 fixers versus nonfixers) predicted under elevated CO2 are taken into account.Key words: climate change, substrate quality, carbon dioxide, plant litter, chemical composition, decomposition.


Author(s):  
Lili Wei

Coastal wetlands are among the most carbon-rich ecosystems in the world. Litter decomposition is a major process controlling soil carbon input. Litter mixing has shown a non-additive effect on the litter decomposition of terrestrial plants particularly of those species having contrasting litter quality. But the non-additive effect has been rarely tested in coastal plants which generally having low-quality litters. We selected three common mangrove species and one saltmarsh species, co-occurring in subtropical coasts, to test whether the non-additive effect occurs when the litters of these coastal species mixing together. We are also concerned whether the changes in the decomposition rate of litter will affect the nutrient contents in waters. A litter-bag experiment was carried out in a glasshouse with single and mixed leaf litters. A non-additive effect was observed in the litter mixtures of mangrove species Aegiceras corniculatum vs. Kandelia obovata (antagonistic) and A. corniculatum vs. Avicennia marina (synergistic). Whereas, the mixture of A. corniculatum (mangrove species) and Spartina alterniflora (saltmarsh species) showed an additive effect. The strength of the non-additive effect was unrelated to the initial trait dissimilarity of litters. Instead, the decomposition rate and mass remaining of litter mixtures were strongly related to the carbon concentrations in litters. Nutrient content in waters was dependent on the decomposition rate of litter mixtures but not on the initial nutrient concentrations in litters. Despite the behind mechanisms were not yet revealed by the current study, these findings have improved our understanding of the litter decomposition of coastal species and the consequent nutrient release.


Ecosystems ◽  
2020 ◽  
Author(s):  
Loraé T. Simpson ◽  
Julia A. Cherry ◽  
Rachel S. Smith ◽  
Ilka C. Feller

2012 ◽  
Vol 518-523 ◽  
pp. 1913-1917
Author(s):  
Fang Qin Guo ◽  
Wei Chen

The effects of N deposition induced by environmental pollution on litter decomposition rate in Shenyang city are analyzed by the reciprocal transplant experiment. By contrasting environments and intraspecific variations in Cortex Phellodendri Chinensis leaf litter quality on mass loss rates to investigate the effects of N deposition on mass loss rates in urban and suburb. The results showed that N deposition in urban significantly affected litter decomposition rate by affecting litter quality and environmental conditions. There was a faster decomposition rate when the environmental conditions or litter quality was affected by N deposition.


Author(s):  
Romina Daiana Fernandez ◽  
María Laura Moreno ◽  
Natalia Pérez Harguindeguy ◽  
Roxana Aragón

Invasive plant species can alter litter decomposition rates through changes in litter quality, environment conditions and decomposer organisms (microflora and soil fauna) but limited research has examined the direct impact on soil fauna. We assessed the abundance and relative contribution of soil meso- and macrofauna to litter decomposition in invaded forest by Ligustrum lucidum and non-invaded forest in a subtropical mountain forest of northwest Argentina using litterbags (0.01, 2 and 6 mm mesh size). Additionally, we analyzed litter quality and soil properties of both forest types. Soil fauna abundance was lower in invaded than in non- invaded forest. The contribution of soil macrofauna to litter decomposition was important in both forest types, but soil mesofauna contribution was only significant in non-invaded forest. Litter decomposition was significantly faster in invaded than in non-invaded forest, consistent with its highest quality. Invaded forest had significantly lower litter accumulation, lower soil moisture and greater soil pH than non-invaded forest. Our results showed that, although soil fauna was less abundant and played a less pronounced role in litter decomposition in invaded forest; these changes did not translate into a reduced litter decomposition rate due to the higher quality of litter produced in the invaded forest.


2019 ◽  
Vol 43 (1) ◽  
Author(s):  
Thomas Okoh ◽  
Esther Edu

Abstract Background Nutrient release during litter decomposition was investigated in Vitex doniana, Terminalia avecinioides, Sarcocephallus latifolius, and Parinari curatellifolius in Makurdi, Benue State Nigeria (January 10 to March 10 and from June 10 to August 10, 2016). Leaf decomposition was measured as loss in mass of litter over time using the decay model Wt/W0 = e−kd t, while $$ \mathrm{Kd}=-\frac{1}{t} In\left(\frac{Wt}{W0}\right) $$Kd=−1tInWtW0 was used to evaluate decomposition rate. Time taken for half of litter to decompose was measured using T50 = ln 2/k; while nutrient accumulation index was evaluated as NAI =$$ \left(\frac{\omega t\ Xt}{\omega \mathrm{o}X\mathrm{o}}\right). $$ωtXtωoXo. Results Average mass of litter remaining after exposure ranged from 96.15 g, (V. doniana) to 78.11 g, (S. lafolius) in dry (November to March) and wet (April to October) seasons. Decomposition rate was averagely faster in the wet season (0.0030) than in the dry season (0.0022) with P. curatellifolius (0.0028) and T. avecinioides (0.0039) having the fastest decomposition rates in dry and wet seasons. Mean residence time (days) ranged from 929 to 356, while the time (days) for half the original mass to decompose ranged from 622 to 201 (dry and wet seasons). ANOVA revealed highly significant differences (p < 0.01) in decomposition rates and exposure time (days) and a significant interaction (p < 0.05) between species and exposure time in both seasons. Conclusion Slow decomposition in the plant leaves implied carbon retention in the ecosystem and slow release of CO2 back to the atmosphere, while nitrogen was mineralized in both seasons. The plants therefore showed effectiveness in nutrient cycling and support productivity in the ecosystem.


Sign in / Sign up

Export Citation Format

Share Document