Effects of N Deposition Induced by Environmental Pollution on Litter Decomposition Rate of Cortex phellodendri chinensis in Shenyang City

2012 ◽  
Vol 518-523 ◽  
pp. 1913-1917
Author(s):  
Fang Qin Guo ◽  
Wei Chen

The effects of N deposition induced by environmental pollution on litter decomposition rate in Shenyang city are analyzed by the reciprocal transplant experiment. By contrasting environments and intraspecific variations in Cortex Phellodendri Chinensis leaf litter quality on mass loss rates to investigate the effects of N deposition on mass loss rates in urban and suburb. The results showed that N deposition in urban significantly affected litter decomposition rate by affecting litter quality and environmental conditions. There was a faster decomposition rate when the environmental conditions or litter quality was affected by N deposition.

2016 ◽  
Vol 2 (1) ◽  
pp. 8-14
Author(s):  
Anang Kadarsah

Information about litter decomposition in Rhizophora Sp. mangrove stands of different planting ages is very important to find out the main factors affecting the whole information on structure and function of mangrove ecosystem and to improve mangrove management in the future. The objective of this study was to determine the litter decomposition in Rhizophora sp. mangrove stands of varying planting ages, with a case study in Subang Regency, West Java Province. Comparisons of litter decomposition were taken from five stands of planting ages (4 years, 12 years, 21 years, 29 years, and 38 years old). Four parameters of litter decomposition compared were dry weight of litter, decomposition rate, litter decomposition coefficient, and half-life time. The observation on Rhizophora Sp. mangrove stands was conducted in three plots of 10 m x 10 m. The results show that the litter decomposition parameters, especially dry weight of litter, decomposition rate, litter decomposition coefficient, and half-life time, were different on each planting age of Rhizophora sp. mangrove stands. The fastest time for litter decomposition was found in 12 years old of Rhizophora Sp. stands with the achievement for 90 days of observation and the decomposition efficiency of 100%. Meanwhile, the slowest was found in 38 years old of Rhizophora Sp. mangrove stands with more than 120 days, and the litter decomposition efficiency was about 97.84%. Environmental conditions (soil and water conditions, nitrogen content, and soil fauna) play a major role on its differentiation. It can be concluded that the litter decomposition in Rhizophora sp. mangrove stands of varying planting ages change over time because of the environmental conditions, but the complexity of the relation between ages is not always apparent.


2020 ◽  
Vol 100 (1) ◽  
pp. 11-25 ◽  
Author(s):  
Guoyong Yan ◽  
Xiongde Dong ◽  
Binbin Huang ◽  
Honglin Wang ◽  
Ziming Hong ◽  
...  

We conducted a field experiment with four levels of simulated nitrogen (N) deposition (0, 2.5, 5, and 7.5 g N m−2 yr−1, respectively) to investigate the response of litter decomposition of Pinus koraiensis (PK), Tilia amurensis (TA), and their mixture to N deposition during winter and growing seasons. Results showed that N addition significantly increased the mass loss of PK litter and significantly decreased the mass loss of TA litter throughout the 2 yr decomposition processes, which indicated that the different responses in the decomposition of different litters to N addition can be species specific, potentially attributed to different litter chemistry. The faster decomposition of PK litter with N addition occurred mainly in the winter, whereas the slower decomposition of TA litter with N addition occurred during the growing season. Moreover, N addition had a positive effect on the release of phosphorus, magnesium, and manganese for PK litter and had a negative effect on the release of carbon, iron, and lignin for TA litter. Decomposition and nutrient release from mixed litter with N addition showed a non-additive effect. The mass loss from litter in the first winter and over the entire study correlated positively with the initial concentration of cellulose, lignin, and certain nutrients in the litter, demonstrating the potential influence of different tissue chemistries.


Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 338 ◽  
Author(s):  
Songze Wan ◽  
Zhanfeng Liu ◽  
Yuanqi Chen ◽  
Jie Zhao ◽  
Qin Ying ◽  
...  

Soil microorganisms play key roles in ecosystems and respond quickly to environmental changes. Liming and/or understory removal are important forest management practices and have been widely applied to planted forests in humid subtropical and tropical regions of the world. However, few studies have explored the impacts of lime application, understory removal, and their interactive effects on soil microbial communities. We conducted a lime application experiment combined with understory removal in a subtropical Eucalyptus L’Hér. plantation. Responses of soil microbial communities (indicated by phospholipid fatty acids, PLFAs), soil physico-chemical properties, and litter decomposition rate to lime and/or understory removal were measured. Lime application significantly decreased both fungal and bacterial PLFAs, causing declines in total PLFAs. Understory removal reduced the fungal PLFAs but had no effect on the bacterial PLFAs, leading to decreases in the total PLFAs and in the ratio of fungal to bacterial PLFAs. No interaction between lime application and understory removal on soil microbial community compositions was observed. Changes in soil microbial communities caused by lime application were mainly attributed to increases in soil pH and NO3–-N contents, while changes caused by understory removal were mainly due to the indirect effects on soil microclimate and the decreased soil dissolved carbon contents. Furthermore, both lime application and understory removal significantly reduced the litter decomposition rates, which indicates the lime application and understory removal may impact the microbe-mediated soil ecological process. Our results suggest that lime application may not be suitable for the management of subtropical Eucalyptus plantations. Likewise, understory vegetation helps to maintain soil microbial communities and litter decomposition rate; it should not be removed from Eucalyptus plantations.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Slamet Santosa ◽  
Muhamad Ruslan Umar ◽  
Dody Priosambodo ◽  
Rizki Amalia Puji Santosa

Teak Tectona grandis Linn is still used as the main product in the form of wood, while other products, especially environmental services have not received much attention. This study analyzed biomass, carbon stocks and decomposition rate of leaf litter in teak plantations in city forest of Hasanuudin University, Makassar. The individual biomass of teak plants is calculated using the allometric equation, Y=0.11x ρ x D2.62. Carbon stocks were analyzed using a formulation, C=0.47xB. The leaf litter decomposition rate is expressed as the ratio of the remaining litter dry weight, with the formulation, X= (A-B)/A. The number of teak plants in 5 sample plots were 239 trees with an average stem diameter of 20.6cm and an average height of 9.02m. Total biomass in 5 sample plots was 51,712.61g. Carbon stock in 5 sample plots was 24,304.92g. Decomposition rate average of leaf litter of 24.4g during 60 days incubation. The existence of teak plantations is able to reduce CO2 in the atmosphere by as much as 89,199.06gCO2 and resulting in a decomposition rate of teak leaf litter 0.4g per day


2020 ◽  
Vol 715 ◽  
pp. 136601 ◽  
Author(s):  
Osmarina A. Marinho ◽  
Luiz A. Martinelli ◽  
Paulo J. Duarte-Neto ◽  
Edmar A. Mazzi ◽  
Jennifer Y. King

Sign in / Sign up

Export Citation Format

Share Document