scholarly journals METHOD OF LINES AND FINITE DIFFERENCE SCHEMES WITH THE EXACT SPECTRUM FOR SOLUTION THE HYPERBOLIC HEAT CONDUCTION EQUATION

2011 ◽  
Vol 16 (1) ◽  
pp. 220-232 ◽  
Author(s):  
Harijs Kalis ◽  
Andris Buikis

This paper is concerning with the 1-D initial–boundary value problem for the hyperbolic heat conduction equation. Numerical solutions are obtained using two discretizations methods – the finite difference scheme (FDS) and the difference scheme with the exact spectrum (FDSES). Hyperbolic heat conduction problem with boundary conditions of the third kind is solved by the spectral method. Method of lines and the Fourier method are considered for the time discretization. Finite difference schemes with central difference and exact spectrum are analyzed. A novel method for solving the discrete spectral problem is used. Special matrix with orthonormal eigenvectors is formed. Numerical results are obtained for steel quenching problem in the plate and in the sphere with holes. The hyperbolic heat conduction problem in the sphere with holes is reduced to the problem in the plate. Some examples and numerical results for two typical problems related to hyperbolic heat conduction equation are presented.

Author(s):  
Siddharth Saurav ◽  
Sandip Mazumder

Abstract The Fourier heat conduction and the hyperbolic heat conduction equations were solved numerically to simulate a frequency-domain thermoreflectance (FDTR) experimental setup. Numerical solutions enable use of realistic boundary conditions, such as convective cooling from the various surfaces of the substrate and transducer. The equations were solved in time domain and the phase lag between the temperature at the center of the transducer and the modulated pump laser signal were computed for a modulation frequency range of 200 kHz to 200 MHz. It was found that the numerical predictions fit the experimentally measured phase lag better than analytical frequency-domain solutions of the Fourier heat equation based on Hankel transforms. The effects of boundary conditions were investigated and it was found that if the substrate (computational domain) is sufficiently large, the far-field boundary conditions have no effect on the computed phase lag. The interface conductance between the transducer and the substrate was also treated as a parameter, and was found to have some effect on the predicted thermal conductivity, but only in certain regimes. The hyperbolic heat conduction equation yielded identical results as the Fourier heat conduction equation for the particular case studied. The thermal conductivity value (best fit) for the silicon substrate considered in this study was found to be 108 W/m/K, which is slightly different from previously reported values for the same experimental data.


2019 ◽  
Vol 969 ◽  
pp. 478-483 ◽  
Author(s):  
Siddhartha Kosti ◽  
Jitender Kundu

Use of nanocomposites is increasing rapidly due to their enhanced thermal and structural properties. In the present work, the numerical modelling of nanocomposites is conducted with the help of the (GA) genetic algorithm and (FD) finite difference techniques to find out a set of nanocomposites with best thermal and structural properties. The genetic algorithm is utilized to find out the best set of nanocomposites on the basis of thermal and structural properties while the finite difference technique is utilized to solve the heat conduction equation. Different nanocomposites considered in the present work are Al-B4C, Al-SiC and Al-Al2O3. The weight percentage of these nanocomposites is varied to see its effect on the nanocomposites properties. In the end, the solidification curve for all the nanocomposites is plotted and analysed. Result reveals that GA helps in identifying the best set of nanocomposites while FD technique helps in predicting the solidification curve accurately. Increment in the wt. % of nanocomposites makes the solidification curve steeper.


Sign in / Sign up

Export Citation Format

Share Document