carbon residue
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 31)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Ugochukwu Onyenze ◽  
Jude Chibuzo Igwe ◽  
Christopher Uchechukwu Sonde ◽  
P. E. Udo ◽  
U. A Ogwuda

This study investigated the optimum condition for biodiesel production at varying temperatures and time using melon (Cucumeropsismannii), groundnut (Arachis hypogea), and soya bean (Glycine max) seed oils. Extraction of oil from Cucumeropsismannii, Arachis hypogea, and Glycine max was accomplished using n-hexane (67.7-69.2oC) as the solvent. Biodiesel was produced from the three different seed oils at varying temperatures of 65oC, 55oC, and 45oC and also at the varied time of 60mins, 50mins and 40mins. The best percentage yield was obtained at a temperature of 65oC and a period of 60 minutes. At 40 min, the process was not complete. A good number of the transesterification process was completed at 50 mins. Also, at the lower temperature of 45oC, the method was not complete. The maximum % yield of the biodiesel obtained was 90.83% for Glycine max, 78.00% for Arachis hypogea, and 77.58% for Cucumeropsismannii seed oils. Fuel properties such as kinematic viscosity, pour point, carbon residue, cloud point, water content, flash point, cetane index, and sulfated ash were examined on the biodiesel. The flash point, carbon residue, kinematic viscosity, and water content were within the standard specified for petrol diesel. Cloud point and pour points of this product were found to be greater than that of petrol diesel. The cetane index was lower than the standard specified for petrol diesel and the three samples contained no sulfated ash. Therefore, melon (Cucumeropsismannii), groundnut (Arachis hypogea), and soya bean (Glycine max) are good alternatives to biodiesel production.  Copyright (c) The Authors


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 977
Author(s):  
Maria Cristina Collivignarelli ◽  
Alessandro Abbà ◽  
Francesca Maria Caccamo ◽  
Marco Carnevale Miino ◽  
Angela Durante ◽  
...  

Minimizing the biological sewage sludge (BSS) produced by wastewater treatment plants (WWTPs) represents an increasingly difficult challenge. With this goal, tests on a semi-full scale Thermophilic Alternate Membrane Biological Reactor (ThAlMBR) were carried out for 12 months. ThAlMBR was applied both on thickened (TBSS) and digested biological sewage sludge (DBSS) with alternating aeration conditions, and emerged: (i) high COD removal yields (up to 90%), (ii) a low specific sludge production (0.02–0.05 kgVS produced/kgCODremoved), (iii) the possibility of recovery the aqueous carbon residue (permeate) in denitrification processes, replacing purchased external carbon sources. Based on the respirometric tests, an excellent biological treatability of the permeate by the mesophilic biomass was observed and the denitrification kinetics reached with the diluted permeate ((4.0 mgN-NO3−/(gVSS h)) were found comparable to those of methanol (4.4 mgN-NO3−/(gVSS h)). Moreover, thanks to the similar results obtained on TBSS and DBSS, ThAlMBR proved to be compatible with diverse sludge line points, ensuring in both cases an important sludge minimization.


Author(s):  
Ruolong Gan ◽  
Junrong Li ◽  
Xiuhua Cao ◽  
Jun Huang ◽  
Liying Qian

The copper end paste used in multilayer ceramic capacitors sintered in nitrogen atmosphere will lead to carbon residue of organic vehicle, which will lead to the reduction of electrode conduc-tivity and high scrap rate. With an attempt to leave no residue in the sintering, the compatibility of solvents and thickeners should be improved because it has an important influence on the hi-erarchical volatilization and carbon residue of organic vehicles. In this work, the volatility of different solvents was compared and several solvents were mixed in a definite proportion to prepare an organic vehicle with polyacrylate resins. The hierarchical volatility and solubility parameters of mixed solvents were adjusted effectively by changing proportions of different components, the thermogravimetric curves of resins and organic vehicles were measured by thermogravimetric analyzer, the effect of solubility parameter on the dissolvability of resins in the solvent and the residual of organic vehicles were studied. Results showed that the hierar-chical volatilization of solvents can be obtained by mixing different solvents; the intrinsic vis-cosity of the organic vehicle is higher and the thermal decomposition residue of polyacrylate resins is lower when the solubility parameters of mixed solvents and polyacrylate resins are closer. The low residual sintering of organic vehicles can be achieved by using the mixed solvent with hierarchical volatility and approximate solubility parameters as resins.


2021 ◽  
Vol 903 ◽  
pp. 75-80
Author(s):  
Valdis Kampars ◽  
Anastasija Naumova

The blends of varying proportions of biodiesel (FAME) containing formate esters of glycerol and 93.0 wt.% fatty acid methyl esters, obtained in an interesterification reaction with methyl formate without further purification, and winter diesel fuel, were prepared, analyzed and compared with winter diesel fuel. The obtained results showed that blends comprising up to 20 vol.% of FAME fulfill the requirements of the standard LVS EN 590 concerning such characteristics as cold flow properties, viscosity, density, and carbon residue. The increase of FAME content worsens the cold flow properties; however, the mixed fuel with 20 vol.% or lower FAME content, according to the cloud point and cold filter plugging point values, remains in the same severe climate "Class 0" group as winter fuel. The carbon residue of mixed fuels raises with increasing FAME content, but stay low and do not exceed the limits of standard for mixtures with FAME percentage up to 20 vol.%. The comparison of mixed fuels containing 20 vol.% of FAME and the same amount of neat biodiesel (99.6 wt.% of fatty acid methyl esters) shows that the difference is negligible. The obtained results have indicated a good potential of FAME obtained in the interesterification reaction with methyl formate without further purification as a diesel fuel additive for up to 20 vol.%.


2021 ◽  
Vol 8 ◽  
Author(s):  
Song Mao ◽  
Qin Zhang

Anode carbon residue is produced in the production of electrolytic aluminum. Its properties need to be studied for secondary utilization. In this paper, mineralogy of anode carbon residue from an electrolytic aluminum plant in Guizhou was studied. The anode residue chemical composition, structure, mineral composition, occurrence state of main elements, etc, was investigated. The results show that: Anode carbon residue is mainly composed of 14 minerals such as cryolite, cryolithionite, elpasolite and graphite. Among them, the opaque minerals are mainly graphite and the transparent minerals are mainly cryolite. Carbon in the form of independent mineral occurrence in graphite; fluoride in the form of independent mineral occurrence in cryolite, cryolithionite, elpasolite and fluorite; aluminum in the form of independent mineral occurrence in cryolite, cryolithionite, elpasolite, aluminium oxide and magnesium aluminate; sodium in the form of independent mineral occurrence in cryolite, cryolithionite, elpasolite. The mineralogical characteristics and occurrence state of carbon and electrolyte were studied, which provided a basis for the separation and recovery of carbon and electrolyte in anode carbon residue.


2021 ◽  
Vol 39 (3) ◽  
pp. 987-991
Author(s):  
Narayan P. Sapkal

The ignition delays of freely falling liquid fuel droplets in a high-temperature environment were determined experimentally as a function of the surrounding parameters and droplet composition. Two different groups of fuels have been categorized based on the viscosity and volatility of each fuel. In the first group, for diesel and kerosene, the ignition delay time decreases with increasing system temperature due to low viscosity and thereby high volatile nature of fuels. Whereas, in the second group, C-heavy oil and blended renewable fuel shows an increase in the ignition delay time with increasing the system temperature and thereby shows the negative temperature coefficient (NTC) behavior due to high viscosity and low volatile characteristics of those fuels. In the case of low viscosity carbon residue fuels with low ignition temperature, they may vaporize early and decrease in the ignition delay time. But for high viscosity carbon residue fuels and with high ignition temperature, it may prolong the vaporization time and thereby physical delay. Evidently, the physical parameters and therefore the physical delay are the predominant factors in the NTC behavior of such high hydrocarbon liquid fuel droplets.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 708
Author(s):  
Linda Makovicka Osvaldova ◽  
Ivica Janigova ◽  
Jozef Rychly

For selected tropical woods (Cumaru, Garapa, Ipe, Kempas, Merbau), a relationship was established between non-isothermal thermogravimetry runs and the wood weight loss under flame during cone calorimetry flammability testing. A correlation was found for the rate constants for decomposition of wood in air at 250 and 300 °C found from thermogravimetry and the total time of sample burning related to the initial mass. Non-isothermal thermogravimetry runs were assumed to be composed from 3 theoretical runs such as decomposition of wood into volatiles itself, oxidation of carbon residue, and the formation of ash. A fitting equation of three processes was proposed and the resulting theoretical lines match experimental lines.


2021 ◽  
Vol 315 ◽  
pp. 02002
Author(s):  
Evgeniуa Makarevich ◽  
Andrey Papin ◽  
Tatiana Cherkasova

The study of mining industry rubber waste pyrolyzates and the search for new opportunities to expand the areas of their application remains an urgent research task. The study of the solid residue of industrial rubber waste pyrolysis is presented in the work. Possibilities of improving the quality characteristics of solid carbon residue are considered. The results of studying the composition by various methods are presented. The adsorption properties of the obtained product are studied and the content of oxygen-containing functional groups in the initial and the upgraded carbon residue of pyrolysis are determined.


2021 ◽  
Vol 245 ◽  
pp. 03086
Author(s):  
Jianhua Yang ◽  
Jingmiao Li ◽  
Dong Jin ◽  
Linyuan Guo

In heat transfer fluids, the carbon residue value is an indicator that provides its relative coking tendency. The micro carbon residue method is widely used because of the simple and convenient operation procedures and low pollution. However, when the carbon residue value is less than 0.1%, the sample needs to be prepared and then tested in the furnace. Therefore, this article aims at the measurement of carbon residue by the heat transfer fluids micro method. The heat transfer fluids is classified according to the product type and the maximum allowed temperature. The sample is prepared by pretreatment. In the method for determining micro carbon residue, whether the sample prepared by pretreatment is selective.


Sign in / Sign up

Export Citation Format

Share Document