Experimental Analysis of Fin and Tube Heat Exchanger in Heating and Cooling Mode

Author(s):  
Artur Rubcov ◽  
Sabina Paulauskaitė ◽  
Violeta Misevičiūtė

The paper provides the results of experimental tests of a wavy fin and tube heat exchanger used to heat (cool) air in a ventilation system when the wavy fin of the heat exchanger is dry and wet. The experimental tests, performed in the range of 1000<Re<4500 of the Reynolds number, determined the dependency of the heat transfer coefficient on the amount of supplied air with the varying geometry of the heat exchanger (the number of tube rows, the distance between fins, the thickness of the fin and the diameter of the tube). The experimental tests were performed on 9 heat exchangers in heating mode (dry fin) and 6 heat exchangers in cooling mode (wet fin). The ratio of heat transfer coefficient values when the fin is dry and wet varies from 0.79 to 1.12. After processing the results of the experimental tests, equations defining the dependency of the heat transfer coefficient on the amount of air and varying geometric parameters of the heat exchanger were derived, based on which 86% to 88% of the results do not exceed the 10% tolerance margin and the standard deviation varies from 3.5% to 4.3%.

2017 ◽  
Vol 9 (4) ◽  
pp. 451-461
Author(s):  
Artur Rubcov ◽  
Sabina Paulauskaitė ◽  
Violeta Misevičiūtė

The paper provides the results of experimental and theoretical test of a wavy fin and tube heat exchanger used to cool air in a ventilation system when the wavy fin of the heat exchanger is dry and wet. The experimental tests, performed in the range of 1000<Re<4500 of the Reynolds number applying LMTD-LMED methodology, determined the dependency of the heat transfer coefficient on the supplied air flow rate with the varying geometry of the heat exchanger (the number of tube rows, the distance between fins, the thickness of the fin and the diameter of the tube). The experimental tests were performed on 9 heat exchangers in heating and 6 heat exchangers in cooling mode. After processing the results of the experimental tests, empirical equation defining the characteristics of the heat transfer coefficient of all heat exchangers were derived. The maximum heat transfer coefficient deviation is 11.6 percent. The correction factor of the wet fin (Lewis number) depending on the number of Reynolds, which ranges from 0.75 to 1.1 also is determined. Maximum capacity deviation equals 3.7 percent. The obtained equations can only be applied to a certain group of heat exchangers (with the same shape of fins or the distance between the tubes). The results of the experimental test and simulation with ANSYS program are compared and the heat transfer coefficients vary from 6.5 to 11.4 percent.


2019 ◽  
Vol 128 ◽  
pp. 04001
Author(s):  
Dawid Taler ◽  
Jan Taler ◽  
Katarzyna Wrona

Experimental studies of multi-row plate-fin heat exchangers show that the highest average heat transfer coefficient on the air side occurs in the first row of tubes when the air velocity in front ofthe exchanger is less thanapproximately 3.5 m/s. In the subsequent rows of tubes up to about the fourth row the heat transfer coefficient decreases. In the fifth and further rows, it can be assumed that the heat transfer coefficient is equal in each tube row. It is necessary to find the relationships fortheair–side Nusselt number on each tube row to design a plate–fin and tube heat exchanger(PFTHE) with the appropriate number of tube rows. The air–side Nusselt number correlations canbe determined experimentally or by CFD modeling (Computational and Fluid Dynamics). The paper presents a newmathematical model of the transient operation of PFTHE, considering that the Nusselt numbers on the air side of individual tube rows are different. The heat transfer coefficient on an analyzed tube row was determined from the equality condition of mass– average air temperature differences on agiven tube row determined using the analytical formula and CFD modeling. The results of numerical modelingwere compared with the results of the experiments.


2010 ◽  
Vol 297-301 ◽  
pp. 650-655
Author(s):  
Rita Aguilar Osorio ◽  
Keith Cliffe

For this research it was considered that the heat exchanger was affected by leakage in the head across the partition plate and the wall between the tube passes. Leakage was a problem in the plastic shell and tube heat exchanger, because it was difficult to seal the partition plate to the head of the exchanger. The material used for manufacturing the heat exchanger was polyvinylidene fluoride, PVDF. In order to predict the amount of flow leaking through the clearances of the tube passes, a numerical simulation was carried out using the computational Fluid Dynamics CFD Fluent Software. To obtain the percentage of the heat loss across the 4 tube passes, different clearance sizes between the partition plate and the wall of the head of the exchanger were analysed. For the smaller clearance size of 0.2 mm the heat transfer coefficient was reduced up to 15%. These results suggest that the flow mass bypassing the head between tube passes affect the results of the heat transfer coefficient and confirm the experimental observation, that its performance was affected by leakage between tube passes. This research served as an extension of the preliminary plastic heat exchanger design.


Author(s):  
Guidong Chen ◽  
Jing Xu ◽  
Ming Zen ◽  
Qiuwang Wang

In order to improve heat transfer performance of conventional segmental baffled shell-and-tube heat exchangers (STHXs), the shell-and-tube heat exchanger with combined helical baffles (CMH-STHX) were invented. In the present study, the CMH-STHX is compared with three other STHXs which were set up with continuous helical baffles (CH-STHX), discontinuous helical baffles (DCH-STHX) and segmental baffles (SG-STHX), by Computational Fluid Dynamics method. The numerical results show that, for the same mass flow rate at the shell side, the overall pressure drop of the CMH-STHX is about 50% and 40% lower than that of SG-STHX and CH-STHX. The heat transfer coefficient of the CMH-STHX is between those of CH-STHX and DCH-STHX and it is 6.3% lower than that of SG-STHX. The heat transfer coefficient under unit pressure drop h/Δp is introduced to evaluate the comprehensive performance of STHXs. The h/Δp of the CMH-STHX is 7.5%, 6.5% and 87.4% higher on average than those of the CH-SHTX, DCH-STHX and SG-STHX. Furthermore, the total heat transfer rate of CMH-STHX is about 25% higher than that of SG-STHX for the same total pressure drop of shell side. Supported by these results, the new heat exchanger (CMH-STHX) may be used to replace the conventional shell-and-tube heat exchanger in industrial applications.


1995 ◽  
Vol 117 (2) ◽  
pp. 440-446 ◽  
Author(s):  
H. Inaba ◽  
S. Morita

This paper dealt with the flow and cold heat-storage characteristics of the oil (tetradecane, C14H30, freezing point 278.9 K)/water emulsion as a latent heat-storage material having a low melting point. A coiled double-tube heat exchanger was used for the cold heat-storage experiment. The pressure drop, the heat transfer coefficient, and the finishing time of cold heat storage in the coiled tube were measured as experimental parameters. It was understood that the flow behavior of the emulsion as a non-New-tonian fluid had an important role in the present cold heat storage. The useful nondi-mensional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient, and the cold heat storage time were derived in terms of modified Dean number and heat capacity ratio.


Author(s):  
Djamalutdin Chalaev ◽  
◽  
Nina Silnyagina ◽  

The use of advanced heat transfer surfaces (corrugated tubes of various modifications) is an effective way to intensify the heat transfer and improve the hydraulic characteristics of tubular heat exchangers. The methods for evaluating the use of such surfaces as working elements in tubular heat exchangers have not been developed so far. The thermal and hydrodynamic processes occurring in the tubes with the developed surfaces were studied to evaluate the efficiency of heat exchange therein. Thin-walled corrugated flexible stainless steel tubes of various modifications were used in experimental studies. The researches were carried out on a laboratory stand, which was designed as a heat exchanger type "tube in tube" with a corrugated inner tube. The stand was equipped with sensors to measure the thermal hydraulic flow conditions. The comparative analysis of operation modes of the heat exchanger with a corrugated inner tube of various modifications and the heat exchanger with a smooth inner tube was performed according to the obtained data. Materials and methods. A convective component of the heat transfer coefficient of corrugated tube increased significantly at identical flow conditions comparing with a smooth tube. Increasing the heat transfer coefficient was in the range of 2.0 to 2.6, and increased with increasing Reynolds number. The increase in heat transfer of specified range outstripped the gain of hydraulic resistance caused by increase of the flow. Results and discussion. CFD model in the software ANSYS CFX 14.5 was adapted to estimate the effect of the tube geometry on the intensity of the heat transfer process. A two-dimensional axially symmetric computer model was used for the calculation. The model is based on Reynolds equation (Navier-Stokes equations for turbulent flow), the continuity equation and the energy equation supplemented by the conditions of uniqueness. SST-turbulence model was used for the solution of the equations. The problem was solved in the conjugate formulation, which allowed assessing the efficiency of heat exchange, depending on various parameters (coolant temperature, coolant velocity, pressure). The criteria dependences were obtained Nu = f (Re, Pr). Conclusions. The use a corrugated tube as a working element in tubular heat exchangers can improve the heat transfer coefficient of 2.0 - 2.6 times, with an increase in hydraulic resistance in the heat exchanger of 2 times (compared with the use of smooth tubes). The criteria dependences obtained on the basis of experimental studies and mathematical modeling allow developing a methodology for engineering calculations for the design of new efficient heat exchangers with corrugated tubes.


2019 ◽  
Vol 70 (6) ◽  
pp. 2040-2043
Author(s):  
Sinziana Radulescu ◽  
Loredana Irena Negoita ◽  
Ion Onutu

A relation for calculation of the effective overall heat transfer coefficient in a triple concentric-tube heat exchanger is proposed. The relation of the effective overall heat transfer coefficient is obtained based on total thermal resistance and it is applied within a case study for thermal analysis of two triple concentric-tube heat exchangers with different geometries, hot fluids and operating conditions. Through case study it is found that the values of effective overall heat transfer coefficient can be obtained with acceptable errors, up to 3 % for both heat exchangers.


2021 ◽  
Vol 15 (2) ◽  
pp. 7936-7947
Author(s):  
Yamina Abdoune ◽  
Sahel Djamel ◽  
Benzeguir Redouane ◽  
Alem Karima

The forced convective heat transfer behavior of a turbulent air flow, steady and Newtonian over a fin and oval-tube heat exchanger has been examined numerically. Where, the effect of the tube tilt angle (α) on the heat transfer coefficient and the friction factor was tested. The inclination angle of the oval-tubes going from 0° (Baseline case) to 90° with a step of 10°. The fluid flows and heat transfer characteristics are presented for Reynolds numbers ranging from 3.000 to 12.000. All investigations are carried out with the help of the CFD ANSYS Fluent. Heat transfer coefficient results in the term of the Nusselt number are validated with the available experimental data and a maximum deviation of 9 % is observed. Reasonable agreement is found. The obtained results show that the tube's inclination angle of 20° is the best design which significantly removes the hot spots behind the tubes, thus giving an increase in the heat transfer coefficient of 13 % compared to the baseline case. In addition, useful correlations are developed to predict Nusselt number and friction factor in the fin and oval-tube heat exchanger.


2014 ◽  
Vol 7 (1) ◽  
pp. 20-25 ◽  
Author(s):  
Bin Zheng ◽  
Yongqi Liu ◽  
Ruixiang Liu ◽  
Zuofeng Wang ◽  
Zuoren Wang ◽  
...  

The experimental system of waste heat utilization exchanger, installed in the tank calcined furnace, was built. The heat transfer coefficient of heat exchanger, temperature distribution of calcined petroleum coke and utilization ratio of waste heat were systematically studied. The results showed that with the increase of calcined petroleum coke velocity, the heat transfer coefficient of heat exchanger increases. The utilization ratio of waste heat increases first and then decreases. With the increase of water velocity, the heat transfer coefficient of heat exchanger increases. Compared with light-andtube heat exchanger, the heat transfer performances of fin-and-tube heat exchanger increase. The average steam producing rate and the average utilization ratio of waste heat increase. The average temperature of calcined petroleum coke in heat exchanger outlet decreases. The uniformity degree of temperature in heat exchanger outlet increases.


Author(s):  
Dahai Guo ◽  
Danesh K. Tafti

The effect of inlet flow angles on flat tube multilouvered fin heat exchangers is studied. Five inlet flow angles, α= ±25, ±45 and 0 degrees are employed with respect to the face of the heat exchanger. One louver angle θ = 25 degrees, and three fin pitches, Fp = 1.0, 1.5 and 2.0 are considered. There is a strong correlation between the response of the flow efficiency and heat transfer coefficient to inlet flow angle. Positive flow angles, which are in the same direction as the louver angle, have to undergo a smaller rotation to be aligned with louver directed flow in the bank, and exhibit better performance characteristics than negative inlet flow angles. The first-order effect of inlet flow angles is to reduce the effective mass flow rate and Reynolds number through the heat exchanger. For positive flow angles and small fin pitches, the heat transfer coefficient correlates well with the effective Reynolds number {Reeff = Re(cosα)}. However, this is not the case when flow angles are negative and the fin pitch increases. Under these conditions, the Nusselt number deviates considerably from the effective Reynolds number analogy, with a subsequent loss in heat transfer capability. For large negative inlet flow angles (α = −45), the heat transfer coefficient drops as much as 50% for a fin pitch Fp = 2.


Sign in / Sign up

Export Citation Format

Share Document