scholarly journals Behaviour of curved reinforcement bars

Author(s):  
Mikkel Frydenlev Langberg ◽  
Jakob Fisker ◽  
Lars German Hagsten ◽  
Christian Svarre

Bended or curved reinforcement bars are often met in assessment of existing reinforced concrete structures and are used in design of nodal regions such as frame corners. Although being present in many tested reinforced concrete structures, only little experimental work has been devoted specifically to the behaviour of curved bars and its interaction with the surrounding concrete. To contribute to a better understanding of this behaviour and functioning of curved reinforcement bars, a preliminary experimental programme has been conducted, the results of which are presented in this paper. The tested specimens were all 90-degree V-shaped beams subjected to constant bending, with the frame corner representing the region of interest. The varied parameter was the statical-height of the adjoining beam segments. The application of optical fibres, mounted on the curved reinforcement, allowed for assessment of the interaction between the curved bars and the concrete. This includes strain/stress variations from which the corresponding tension forces are estimated. The bar/concrete-interaction is qualitatively assessed based upon the gradient of the tension force. Photogrammetric measurements allowed for a detailed study of the accompanying crack development, which showed an area with few cracks at the corner region and a change in inclination of cracks near the corner region.

2020 ◽  
Vol 8 (4) ◽  
pp. 290 ◽  
Author(s):  
Robert E Melchers

The sustainability of reinforced concrete is critical, particularly for structures exposed to marine environments. Chlorides are implicated in causing or accelerating reinforcement corrosion and potentially earlier expensive repairs, yet there are many older reinforced concrete structures in good condition for many decades despite very high chloride levels at the reinforcement. The reasons for this are reviewed briefly, together with recent experimental work that better defines the role of chlorides. One is initiation of reinforcement corrosion but only through localized pitting at air-voids in concrete at the interface with the steel reinforcement. These tend to be small or negligible for high quality well-compacted concretes. The other role for chlorides has been shown, in experimental work, to accelerate the long-term loss of concrete alkali material. On the other hand, a review of practical experience shows that what has been termed chloride-induced reinforcement corrosion often is not that at all, but is the end-product of factors that impair the protective nature of the concrete. As reviewed herein, these include poor compaction, physical damage to concrete cover, concrete shrinkage, and alkali-aggregate reactions. The various observations presented are important for the proper understanding, analysis, and design of durable reinforced concrete structures exposed to chloride-rich environments.


Currently, prefabricated reinforced concrete structures are widely used for the construction of buildings of various functional purposes. In this regard, has been developed SP 356.1325800.2017 "Frame Reinforced Concrete Prefabricated Structures of Multi-Storey Buildings. Design Rules", which establishes requirements for the calculation and design of precast reinforced concrete structures of frame buildings of heavy, fine-grained and lightweight structural concrete for buildings with a height of not more than 75 m. The structure of the set of rules consists of eight sections and one annex. The document reviewed covers the design of multi-story framed beam structural systems, the elements of which are connected in a spatial system with rigid (partially compliant) or hinged joints and concreting of the joints between the surfaces of the abutting precast elements. The classification of structural schemes of building frames, which according to the method of accommodation of horizontal loads are divided into bracing, rigid frame bracing and framework, is presented. The list of structural elements, such as foundations, columns, crossbars, ribbed and hollow floor slabs and coatings, stiffness elements and external enclosing structures is given; detailed instructions for their design are provided. The scope of the developed set of rules includes all natural and climatic zones of the Russian Federation, except seismic areas with 7 or more points, as well as permafrost zones.


Problems when calculating reinforced concrete structures based on the concrete deformation under compression diagram, which is presented both in Russian and foreign regulatory documents on the design of concrete and reinforced concrete structures are considered. The correctness of their compliance for all classes of concrete remains very approximate, especially a significant difference occurs when using Euronorm due to the different shape and sizes of the samples. At present, there are no methodical recommendations for determining the ultimate relative deformations of concrete under axial compression and the construction of curvilinear deformation diagrams, which leads to limited experimental data and, as a result, does not make it possible to enter more detailed ultimate strain values into domestic standards. The results of experimental studies to determine the ultimate relative deformations of concrete under compression for different classes of concrete, which allowed to make analytical dependences for the evaluation of the ultimate relative deformations and description of curvilinear deformation diagrams, are presented. The article discusses various options for using the deformation model to assess the stress-strain state of the structure, it is concluded that it is necessary to use not only the finite values of the ultimate deformations, but also their intermediate values. This requires reliable diagrams "s–e” for all classes of concrete. The difficulties of measuring deformations in concrete subjected to peak load, corresponding to the prismatic strength, as well as main cracks that appeared under conditions of long-term step loading are highlighted. Variants of more accurate measurements are proposed. Development and implementation of the new standard GOST "Concretes. Methods for determination of complete diagrams" on the basis of the developed method for obtaining complete diagrams of concrete deformation under compression for the evaluation of ultimate deformability of concrete under compression are necessary.


2019 ◽  
Vol 9 (1) ◽  
pp. 61
Author(s):  
SINGH RAVIKANT ◽  
KUMAR SINGH VINAY ◽  
YADAV MAHESH ◽  
◽  
◽  
...  

2014 ◽  
Vol 4 (3) ◽  
pp. 1-9
Author(s):  
Badrinarayan Rath ◽  
◽  
Shirish Deo ◽  
Gangadhar Ramtekkar ◽  
◽  
...  

2013 ◽  
Vol 99 (7) ◽  
pp. 1663-1670
Author(s):  
Eftychia Apostolidi ◽  
Nikolitsa Karela ◽  
Stephanos Dritsos

Sign in / Sign up

Export Citation Format

Share Document