scholarly journals DESCENT TRAJECTORY MODELLING FOR THE LANDING SYSTEM PROTOTYPE

Transport ◽  
2020 ◽  
Vol 35 (2) ◽  
pp. 133-142
Author(s):  
Henrich Glaser-Opitz ◽  
Ján Labun ◽  
Kristína Budajová ◽  
Leonard Glaser-Opitz

This paper gives another view on a method used for aircraft approach and landing phase of flight that enables replacement of standard glideslope. Proposed Landing System is based on Terrain Reference Navigation (TRN) using own created terrain elevation database, based on Radar Altimeter (RA) measurements compared to the overflown terrain. Simulations were performed on a chosen airport (KSC – Košice Airport) and aircraft (Boeing 737-800), where descend procedures was designed based on real airline data in compliance with Initial 4D Trajectory (i4D). Descend trajectory was modelled with EUROCONTROL Base of Aircraft DAta (BADA) performance model as a Continuous Descent Approach (CDA) from proposed merging point to the KSC RunWaY (RWY) threshold. This method was proposed to enhance pilot situational awareness in situations when standard Instrument Landing System (ILS) information could be lost or misleading and without the need of any ground station for successful navigation and guidance to the RWY threshold. Landing System prototype flight test were performed on full mission flight simulator.

1995 ◽  
Vol 18 (6) ◽  
pp. 1470-1470
Author(s):  
Richard E. Zelenka ◽  
Zee Yee ◽  
Andre Zirkler
Keyword(s):  

2017 ◽  
Vol 15 (1) ◽  
pp. 62 ◽  
Author(s):  
Anthony R. Gonzalez, BSc ◽  
Samuel H. Amber, PhD

US Pacific Command's strategy includes assistance to United States government relief agencies and nongovernment organizations during humanitarian aid and disaster relief operations in the Asia-Pacific region. Situational awareness during these operations is enhanced by broad interagency access to unclassified commercial satellite imagery. The Remote Ground Terminal—a mobile satellite downlink ground station—has undergone several technology demonstrations and participated in an overseas deployment exercise focused on a natural disaster scenario. This ground station has received new commercial imagery within 20 minutes, hastening a normally days-long process. The Army Geospatial Center continues to manage technology development and product improvement for the Remote Ground Terminal. Furthermore, this ground station is now on a technology transition path into the Distributed Common Ground System-Army program of record.


2021 ◽  
Author(s):  
Julia D. Tsaltas

A fast multirotor performance prediction method is presented. The method uses an algorithm to determine the flight performance and trim solutions of multirotor vehicles in steady, level flight. The method considers parasitic drag, force trim, fuselage interference, rotor interference, moment trim, and power prediction. In order to validate the method, vehicle lift, drag, and pitching moment predictions are compared to experimental data from NASA Ames for the 3DR Solo, a commercially available vehicle. The performance comparison with wind tunnel data show similar lift, drag and pitching moment trends when using estimated rotor and vehicle geometries. In addition, the predicted rotor speeds, vehicle power, and vehicle pitch are compared to flight test data of the Aeryon SkyRanger. The lead and rear rotor speed results show that the application of moment trim into the performance model provides rotor speed estimates that reflect the differential rotor speeds the flight test. An orientation study is conducted to explore the effects of rotor and fuselage interference velocities on rotor performance and the performance differences of a four-rotor vehicle flying in diamond and square configurations. Finally, a mass offset study is presented to predict the changes in rotor speed distribution of a SkyRanger vehicle when a 100 g mass is added to the support arm, which simulates asymmetry in centre of gravity location. The predicted performance results show overlapping results with flight testing with and without the mass offset at airspeeds below 5 m/s. At higher airspeeds, the rotor speed predictions that are established by moment trim requirements reflect the rotor speed trends shown from flight test data.


2006 ◽  
Vol 110 (1114) ◽  
pp. 821-829 ◽  
Author(s):  
J. J. Kehoe ◽  
R. S. Causey ◽  
M. Abdulrahim ◽  
R. Lind

Missions envisioned for micro air vehicles may require a high degree of autonomy to operate in unknown environments. As such, vision is a critical technology for mission capability. This paper discusses an autopilot that uses vision coupled with GPS and altitude sensors for waypoint navigation. The vision processing analyses a horizon to estimate roll and pitch information. The GPS and altitude sensors then command values to roll and pitch for navigation between waypoints. A flight test of a MAV using this autopilot demonstrates the resulting closed-loop system is able to autonomously reach several waypoints. The vehicle actually uses a telemetry link to a ground station on which all vision processing and related guidance and control is performed. Several issues, such as estimating heading to account for slow updates, are investigated to increase performance.


1995 ◽  
Vol 18 (4) ◽  
pp. 702-708 ◽  
Author(s):  
Richard E. Zelenka ◽  
Zee Yee ◽  
Andre Zirkler
Keyword(s):  

Author(s):  
S. Jennings ◽  
B. Cheung ◽  
A. Rupert ◽  
K. Schultz ◽  
G. Craig

2018 ◽  
Vol 12 (5) ◽  
pp. 631-634 ◽  
Author(s):  
Trevor Jain ◽  
Aaron Sibley ◽  
Henrik Stryhn ◽  
Ives Hubloue

AbstractIntroductionThe proliferation of unmanned aerial vehicles (UAV) has the potential to change the situational awareness of incident commanders allowing greater scene safety. The aim of this study was to compare UAV technology to standard practice (SP) in hazard identification during a simulated multi-vehicle motor collision (MVC) in terms of time to identification, accuracy and the order of hazard identification.MethodsA prospective observational cohort study was conducted with 21 students randomized into UAV or SP group, based on a MVC with 7 hazards. The UAV group remained at the UAV ground station while the SP group approached the scene. After identifying hazards the time and order was recorded.ResultsThe mean time (SD, range) to identify the hazards were 3 minutes 41 seconds (1 minute 37 seconds, 1 minute 48 seconds-6 minutes 51 seconds) and 2 minutes 43 seconds (55 seconds, 1 minute 43 seconds-4 minutes 38 seconds) in UAV and SP groups corresponding to a mean difference of 58 seconds (P=0.11). A non-parametric permutation test showed a significant (P=0.04) difference in identification order.ConclusionBoth groups had 100% accuracy in hazard identification with no statistical difference in time for hazard identification. A difference was found in the identification order of hazards. (Disaster Med Public Health Preparedness. 2018;12:631–634)


2021 ◽  
Author(s):  
Julia D. Tsaltas

A fast multirotor performance prediction method is presented. The method uses an algorithm to determine the flight performance and trim solutions of multirotor vehicles in steady, level flight. The method considers parasitic drag, force trim, fuselage interference, rotor interference, moment trim, and power prediction. In order to validate the method, vehicle lift, drag, and pitching moment predictions are compared to experimental data from NASA Ames for the 3DR Solo, a commercially available vehicle. The performance comparison with wind tunnel data show similar lift, drag and pitching moment trends when using estimated rotor and vehicle geometries. In addition, the predicted rotor speeds, vehicle power, and vehicle pitch are compared to flight test data of the Aeryon SkyRanger. The lead and rear rotor speed results show that the application of moment trim into the performance model provides rotor speed estimates that reflect the differential rotor speeds the flight test. An orientation study is conducted to explore the effects of rotor and fuselage interference velocities on rotor performance and the performance differences of a four-rotor vehicle flying in diamond and square configurations. Finally, a mass offset study is presented to predict the changes in rotor speed distribution of a SkyRanger vehicle when a 100 g mass is added to the support arm, which simulates asymmetry in centre of gravity location. The predicted performance results show overlapping results with flight testing with and without the mass offset at airspeeds below 5 m/s. At higher airspeeds, the rotor speed predictions that are established by moment trim requirements reflect the rotor speed trends shown from flight test data.


Author(s):  
Edward J. Walsh ◽  
C. W. Fairall ◽  
Ivan PopStefanija

AbstractThe airborne NOAA Wide Swath Radar Altimeter (WSRA) is a 16 GHz digital beamforming radar altimeter that produces a topographic map of the waves as the aircraft advances. The wave topography is transformed by a two-dimensional FFT into directional wave spectra. The WSRA operates unattended on the aircraft and provides continuous real-time reporting of several data products: (1) significant wave height, (2) directional ocean wave spectra, (3) the wave height, wavelength, and direction of propagation of the primary and secondary wave fields, (4) rainfall rate and (5) sea surface mean square slope (mss). During hurricane flights the data products are transmitted in real-time from the NOAA WP-3D aircraft through a satellite data link to a ground station and on to the National Hurricane Center (NHC) for use by the forecasters for intensity projections and incorporation in hurricane wave models. The WSRA is the only instrument that can quickly provide high-density measurements of the complex wave topography over a large area surrounding the eye of the storm.


Sign in / Sign up

Export Citation Format

Share Document