scholarly journals ParSNIP: Generative Models of Transient Light Curves with Physics-enabled Deep Learning

2021 ◽  
Vol 162 (6) ◽  
pp. 275
Author(s):  
Kyle Boone

Abstract We present a novel method to produce empirical generative models of all kinds of astronomical transients from data sets of unlabeled light curves. Our hybrid model, which we call ParSNIP, uses a neural network to model the unknown intrinsic diversity of different transients and an explicit physics-based model of how light from the transient propagates through the universe and is observed. The ParSNIP model predicts the time-varying spectra of transients despite only being trained on photometric observations. With a three-dimensional intrinsic model, we are able to fit out-of-sample multiband light curves of many different kinds of transients with model uncertainties of 0.04–0.06 mag. The representation learned by the ParSNIP model is invariant to redshift, so it can be used to perform photometric classification of transients even with heavily biased training sets. Our classification techniques significantly outperform state-of-the-art methods on both simulated (PLAsTiCC) and real (PS1) data sets with 2.3× and 2× less contamination, respectively, for classification of Type Ia supernovae. We demonstrate how our model can identify previously unobserved kinds of transients and produce a sample that is 90% pure. The ParSNIP model can also estimate distances to Type Ia supernovae in the PS1 data set with an rms of 0.150 ± 0.007 mag compared to 0.155 ± 0.008 mag for the SALT2 model on the same sample. We discuss how our model could be used to produce distance estimates for supernova cosmology without the need for explicit classification.

2021 ◽  
Vol 5 (12) ◽  
pp. 283
Author(s):  
Braden Garretson ◽  
Dan Milisavljevic ◽  
Jack Reynolds ◽  
Kathryn E. Weil ◽  
Bhagya Subrayan ◽  
...  

Abstract Here we present a catalog of 12,993 photometrically-classified supernova-like light curves from the Zwicky Transient Facility, along with candidate host galaxy associations. By training a random forest classifier on spectroscopically classified supernovae from the Bright Transient Survey, we achieve an accuracy of 80% across four supernova classes resulting in a final data set of 8208 Type Ia, 2080 Type II, 1985 Type Ib/c, and 720 SLSN. Our work represents a pathfinder effort to supply massive data sets of supernova light curves with value-added information that can be used to enable population-scale modeling of explosion parameters and investigate host galaxy environments.


2019 ◽  
Vol 490 (3) ◽  
pp. 3882-3907 ◽  
Author(s):  
Benjamin E Stahl ◽  
WeiKang Zheng ◽  
Thomas de Jaeger ◽  
Alexei V Filippenko ◽  
Andrew Bigley ◽  
...  

ABSTRACT We present BVRI and unfiltered light curves of 93 Type Ia supernovae (SNe Ia) from the Lick Observatory Supernova Search (LOSS) follow-up program conducted between 2005 and 2018. Our sample consists of 78 spectroscopically normal SNe Ia, with the remainder divided between distinct subclasses (3 SN 1991bg-like, 3 SN 1991T-like, 4 SNe Iax, 2 peculiar, and 3 super-Chandrasekhar events), and has a median redshift of 0.0192. The SNe in our sample have a median coverage of 16 photometric epochs at a cadence of 5.4 d, and the median first observed epoch is ∼4.6 d before maximum B-band light. We describe how the SNe in our sample are discovered, observed, and processed, and we compare the results from our newly developed automated photometry pipeline to those from the previous processing pipeline used by LOSS. After investigating potential biases, we derive a final systematic uncertainty of 0.03 mag in BVRI for our data set. We perform an analysis of our light curves with particular focus on using template fitting to measure the parameters that are useful in standardizing SNe Ia as distance indicators. All of the data are available to the community, and we encourage future studies to incorporate our light curves in their analyses.


2005 ◽  
Vol 192 ◽  
pp. 161-165
Author(s):  
Thomas Matheson

SummaryThe supernova (SN) group at the Harvard-Smithsonian Center for Astrophysics has been using the facilities of the F. L. Whipple Observatory to gather optical photometric and spectroscopic data on nearby supernovae for several years. The collection of spectra of Type Ia SNe is now large enough to allow a comprehensive analysis. I will present preliminary results from a study of a subsample of the CfA Type Ia spectroscopic database, with over 200 spectra of 31 Type Ia SNe. The SNe selected all have well-calibrated light curves and cover a wide scope of luminosity classes. The epochs of observation range from fourteen days before maximum to fifty days past maximum. All of the spectra were obtained with the same instrument on the same telescope, and were reduced using the same techniques. With such a large, homogeneous data set, the spectroscopic similarities and differences among Type Ia SNe become readily apparent.


Author(s):  
Surbhi Agrawal ◽  
Kakoli Bora ◽  
Swati Routh

In this chapter, authors have discussed few machine learning techniques and their application to perform the supernovae classification. Supernovae has various types, mainly categorized into two important types. Here, focus is given on the classification of Type-Ia supernova. Astronomers use Type-Ia supernovae as “standard candles” to measure distances in the Universe. Classification of supernovae is mainly a matter of concern for the astronomers in the absence of spectra. Through the application of different machine learning techniques on the data set authors have tried to check how well classification of supernovae can be performed using these techniques. Data set used is available at Riess et al. (2007) (astro-ph/0611572).


2013 ◽  
Vol 436 (1) ◽  
pp. 333-347 ◽  
Author(s):  
S. A. Sim ◽  
I. R. Seitenzahl ◽  
M. Kromer ◽  
F. Ciaraldi-Schoolmann ◽  
F. K. Röpke ◽  
...  

2020 ◽  
pp. 294-306
Author(s):  
Surbhi Agrawal ◽  
Kakoli Bora ◽  
Swati Routh

In this chapter, authors have discussed few machine learning techniques and their application to perform the supernovae classification. Supernovae has various types, mainly categorized into two important types. Here, focus is given on the classification of Type-Ia supernova. Astronomers use Type-Ia supernovae as “standard candles” to measure distances in the Universe. Classification of supernovae is mainly a matter of concern for the astronomers in the absence of spectra. Through the application of different machine learning techniques on the data set authors have tried to check how well classification of supernovae can be performed using these techniques. Data set used is available at Riess et al. (2007) (astro-ph/0611572).


2020 ◽  
Vol 498 (4) ◽  
pp. 5512-5516
Author(s):  
Sasha R Brownsberger ◽  
Christopher W Stubbs ◽  
Daniel M Scolnic

ABSTRACT Using the Pantheon data set of Type Ia supernovae, a recent publication (R20 in this work) reports a  2σ detection of oscillations in the expansion history of the Universe. The study conducted by R20 is wholly worthwhile. However, we demonstrate that there is a $\gt 10{{\ \rm per\ cent}}$ chance of statistical fluctuations in the Pantheon data producing a false oscillatory signal larger than the oscillatory signal that R20 report. Their results are a less than 2σ detection. Applying the R20 methodology to simulated Pantheon data, we determine that these oscillations could arise due to analysis artefacts. The uneven spacing of Type Ia supernovae in redshift space and the complicated analysis method of R20 impose a structured throughput function. When analysed with the R20 prescription, about $11{{\ \rm per\ cent}}$ of artificial ΛCDM data sets produce a stronger oscillatory signal than the actual Pantheon data. Our results underscore the importance of understanding the false ‘signals’ that can be introduced by complicated data analyses.


Author(s):  
Z. Q. Sun ◽  
F. Y. Wang

Abstract Recent studies indicated that an anisotropic cosmic expansion may exist. In this paper, we use three data sets of type Ia supernovae (SNe Ia) to probe the isotropy of cosmic acceleration. For the Union2.1 data set, the direction and magnitude of the dipole are $$(l=309.3^{\circ } {}^{+ 15.5^{\circ }}_{-15.7^{\circ }} ,\ b = -8.9^{\circ } {}^{ + 11.2^{\circ }}_{-9.8^{\circ }} )$$(l=309.3∘-15.7∘+15.5∘,b=-8.9∘-9.8∘+11.2∘), and $$\ A=(1.46 \pm 0.56) \times 10^{-3}$$A=(1.46±0.56)×10-3 from dipole fitting method. The hemisphere comparison results are $$\delta =0.20,l=352^{\circ },b=-9^{\circ }$$δ=0.20,l=352∘,b=-9∘. For the Constitution data set, the results are $$(l=67.0^{\circ }{}^{+ 66.5^{\circ }}_{-66.2^{\circ }},\ b=-0.6^{\circ }{}^{+ 25.2^{\circ }}_{-26.3^{\circ }})$$(l=67.0∘-66.2∘+66.5∘,b=-0.6∘-26.3∘+25.2∘), and $$\ A=(4.4 \pm 5.0) \times 10^{-4}$$A=(4.4±5.0)×10-4 for dipole fitting and $$\delta = 0.56,l=141^{\circ },b=-11^{\circ }$$δ=0.56,l=141∘,b=-11∘ for hemisphere comparison. For the JLA data set, no significant dipolar or quadrupolar deviation is found. We find previous works using (l, b, A) directly as fitting parameters may get improper results. We also explore the effects of anisotropic distributions of coordinates and redshifts on the results using Monte-Carlo simulations. We find that the anisotropic distribution of coordinates can cause dipole directions and make dipole magnitude larger. Anisotropic distribution of redshifts is found to have no significant effect on dipole fitting results.


1994 ◽  
Vol 147 ◽  
pp. 186-213
Author(s):  
J. Isern ◽  
R. Canal

AbstractIn this paper we review the behavior of growing stellar degenerate cores. It is shown that ONeMg white dwarfs and cold CO white dwarfs can collapse to form a neutron star. This collapse is completely silent since the total amount of radioactive elements that are expelled is very small and a burst of γ-rays is never produced. In the case of an explosion (always carbonoxygen cores), the outcome fits quite well the observed properties of Type Ia supernovae. Nevertheless, the light curves and the velocities measured at maximum are very homogeneous and the diversity introduced by igniting at different densities is not enough to account for the most extreme cases observed. It is also shown that a promising way out of this problem could be the He-induced detonation of white dwarfs with different masses. Finally, we outline that the location of the border line which separetes explosion from collapse strongly depends on the input physics adopted.


Sign in / Sign up

Export Citation Format

Share Document