scholarly journals Detection of Enhanced Central Mass-to-light Ratios in Low-mass Early-type Galaxies: Evidence for Black Holes?

2017 ◽  
Vol 850 (1) ◽  
pp. 15 ◽  
Author(s):  
Renuka Pechetti ◽  
Anil Seth ◽  
Michele Cappellari ◽  
Richard McDermid ◽  
Mark den Brok ◽  
...  
Keyword(s):  
2019 ◽  
Vol 14 (S353) ◽  
pp. 286-288
Author(s):  
Dieu D. Nguyen

AbstractThe existence intermediate mass black holes (IMBH, MBH ≲ 106M⊙) at the centers low-mass galaxies with stellar masses between (1–10)×10M⊙ are key to constraining the origin of black hole (BH) seeds and understanding the physics deriving the co-evolution of central BHs and their host galaxies. However, finding and weighing IMBH is challenging. Here, we present the first observational evidence for such IMBHs at the centers of the five nearest early-type galaxies (D < 3.5 Mpc, ETGs) revealed by adaptive optics kinematics from Gemini and VLT and high-resolution HST spectroscopy. We find that all five galaxies appear to host IMBHs with four of the five having masses below 1 million M⊙ and the lowest mass BH being only ∼7,000 M⊙. This work provides a first glimpse of the demographics of IMBHs in this galaxy mass range and at velocity dispersions < 70 km/s, and thus provides an important extension to the bulge mass and galaxy dispersion scaling relations. The ubiquity of central BHs in these galaxies provides a unique constraint on BH seed formation scenarios, favoring a formation mechanism that produces an abundance of low-mass seed BHs.


2019 ◽  
Vol 872 (1) ◽  
pp. 104 ◽  
Author(s):  
Dieu D. Nguyen ◽  
Anil C. Seth ◽  
Nadine Neumayer ◽  
Satoru Iguchi ◽  
Michelle Cappellari ◽  
...  

1997 ◽  
Vol 163 ◽  
pp. 620-625 ◽  
Author(s):  
H. Ford ◽  
Z. Tsvetanov ◽  
L. Ferrarese ◽  
G. Kriss ◽  
W. Jaffe ◽  
...  

AbstractHST images have led to the discovery that small (r ~ 1″ r ~ 100 – 200 pc), well-defined, gaseous disks are common in the nuclei of elliptical galaxies. Measurements of rotational velocities in the disks provide a means to measure the central mass and search for massive black holes in the parent galaxies. The minor axes of these disks are closely aligned with the directions of the large–scale radio jets, suggesting that it is angular momentum of the disk rather than that of the black hole that determines the direction of the radio jets. Because the disks are directly observable, we can study the disks themselves, and investigate important questions which cannot be directly addressed with observations of the smaller and unresolved central accretion disks. In this paper we summarize what has been learned to date in this rapidly unfolding new field.


2020 ◽  
Vol 15 (S359) ◽  
pp. 238-242
Author(s):  
Mar Mezcua

AbstractDetecting the seed black holes from which quasars formed is extremely challenging; however, those seeds that did not grow into supermassive should be found as intermediate-mass black holes (IMBHs) of 100 – 105 M⊙ in local dwarf galaxies. The use of deep multiwavelength surveys has revealed that a population of actively accreting IMBHs (low-mass AGN) exists in dwarf galaxies at least out to z ˜3. The black hole occupation fraction of these galaxies suggests that the early Universe seed black holes formed from direct collapse of gas, which is reinforced by the possible flattening of the black hole-galaxy scaling relations at the low-mass end. This scenario is however challenged by the finding that AGN feedback can have a strong impact on dwarf galaxies, which implies that low-mass AGN in dwarf galaxies might not be the untouched relics of the early seed black holes. This has important implications for seed black hole formation models.


New Astronomy ◽  
1999 ◽  
Vol 4 (4) ◽  
pp. 313-323 ◽  
Author(s):  
G.E. Brown ◽  
C.-H. Lee ◽  
Hans A. Bethe
Keyword(s):  
X Ray ◽  
Low Mass ◽  

2008 ◽  
Author(s):  
Smita Mathur ◽  
Himel Ghosh ◽  
Laura Ferrarese ◽  
Fabrizio Fiore ◽  
Sandip K. Chakrabarti ◽  
...  

2013 ◽  
Vol 8 (S299) ◽  
pp. 64-65
Author(s):  
Julien Rameau ◽  
Gaël Chauvin ◽  
Anne-Marie Lagrange ◽  
Philippe Delorme ◽  
Justine Lannier

AbstractWe present the results of two three-year surveys of young and nearby stars to search for wide orbit giant planets. On the one hand, we focus on early-type and massive, namely β Pictoris analogs. On the other hand, we observe late type and very low mass stars, i.e., M dwarfs. We report individual detections of new planetary mass objects. According to our deep detection performances, we derive the observed frequency of giant planets between these two classes of parent stars. We find frequency between 6 to 12% but we are not able to assess a/no correlation with the host-mass.


2007 ◽  
Vol 3 (S245) ◽  
pp. 233-234
Author(s):  
A. Beifiori ◽  
E. M. Corsini ◽  
E. Dalla Bontà ◽  
A. Pizzella ◽  
L. Coccato ◽  
...  

AbstractThe growth of supermassive black holes (SMBHs) appears to be closely linked with the formation of spheroids. There is a pressing need to acquire better statistics on SMBH masses, since the existing samples are preferentially weighted toward early-type galaxies with very massive SMBHs. With this motivation we started a project aimed at measuring upper limits on the mass of the SMBHs that can be present in the center of all the nearby galaxies (D < 100 Mpc) for which STIS/G750M spectra are available in the HST archive. These upper limits will be derived by modeling the central emission-line widths ([N II] λλ6548, 6583, Hα and [S II] λλ6716, 6731) observed over an aperture of ~01 (R < 50 pc). Here we present our preliminary results for a subsample of 76 bulges.


Author(s):  
Andrew J. Benson

There is now good observational evidence that some type of feedback process must operate within galaxies. Such a process has long been thought to exist on the basis of theoretical studies of galaxy formation. This feedback is responsible for regulating the rate of star formation and thereby preventing the formation of an overabundance of low–mass galaxies. There is gathering evidence that this feedback process must somehow involve the supermassive black holes thought to dwell in the centres of galaxies.


Sign in / Sign up

Export Citation Format

Share Document