scholarly journals Filamentary Fragmentation and Accretion in High-mass Star-forming Molecular Clouds

2018 ◽  
Vol 855 (1) ◽  
pp. 9 ◽  
Author(s):  
Xing Lu ◽  
Qizhou Zhang ◽  
Hauyu Baobab Liu ◽  
Patricio Sanhueza ◽  
Ken’ichi Tatematsu ◽  
...  
2018 ◽  
Vol 617 ◽  
pp. A14 ◽  
Author(s):  
S. Paron ◽  
M. B. Areal ◽  
M. E. Ortega

Aims. Estimating molecular abundances ratios from directly measuring the emission of the molecules toward a variety of interstellar environments is indeed very useful to advance our understanding of the chemical evolution of the Galaxy, and hence of the physical processes related to the chemistry. It is necessary to increase the sample of molecular clouds, located at different distances, in which the behavior of molecular abundance ratios, such as the 13CO/C18O ratio, is studied in detail. Methods. We selected the well-studied high-mass star-forming region G29.96−0.02, located at a distance of about 6.2 kpc, which is an ideal laboratory to perform this type of study. To study the 13CO/C18O abundance ratio (X13∕18) toward this region, we used 12CO J = 3–2 data obtained from the CO High-Resolution Survey, 13CO and C18O J = 3–2 data from the 13CO/C18O (J = 3–2) Heterodyne Inner Milky Way Plane Survey, and 13CO and C18O J = 2–1 data retrieved from the CDS database that were observed with the IRAM 30 m telescope. The distribution of column densities and X13∕18 throughout the extension of the analyzed molecular cloud was studied based on local thermal equilibrium (LTE) and non-LTE methods. Results. Values of X13∕18 between 1.5 and 10.5, with an average of about 5, were found throughout the studied region, showing that in addition to the dependency of X13∕18 and the galactocentric distance, the local physical conditions may strongly affect this abundance ratio. We found that correlating the X13∕18 map with the location of the ionized gas and dark clouds allows us to suggest in which regions the far-UV radiation stalls in dense gaseous components, and in which regions it escapes and selectively photodissociates the C18O isotope. The non-LTE analysis shows that the molecular gas has very different physical conditions, not only spatially throughout the cloud, but also along the line of sight. This type of study may represent a tool for indirectly estimating (from molecular line observations) the degree of photodissociation in molecular clouds, which is indeed useful to study the chemistry in the interstellar medium.


2017 ◽  
Vol 839 (2) ◽  
pp. 113 ◽  
Author(s):  
R. Retes-Romero ◽  
Y. D. Mayya ◽  
A. Luna ◽  
L. Carrasco

2019 ◽  
Vol 71 (Supplement_1) ◽  
Author(s):  
Fumitaka Nakamura ◽  
Shun Ishii ◽  
Kazuhito Dobashi ◽  
Tomomi Shimoikura ◽  
Yoshito Shimajiri ◽  
...  

Abstract We carried out mapping observations toward three nearby molecular clouds, Orion A, Aquila Rift, and M 17, using a new 100 GHz receiver, FOREST, on the Nobeyama 45 m telescope. We describe the details of the data obtained such as intensity calibration, data sensitivity, angular resolution, and velocity resolution. Each target contains at least one high-mass star-forming region. The target molecular lines were 12CO (J = 1–0), 13CO (J = 1–0), C18O (J = 1–0), N2H+ (J = 1–0), and CCS (JN = 87–76), with which we covered the density range of 102 cm−3 to 106 cm−3 with an angular resolution of ∼20″ and a velocity resolution of ∼0.1 km s−1. Assuming the representative distances of 414 pc, 436 pc, and 2.1 kpc, the maps of Orion A, Aquila Rift, and M17 cover most of the densest parts with areas of about 7 pc × 15 pc, 7 pc × 7 pc, and 36 pc × 18 pc, respectively. On the basis of the 13CO column density distribution, the total molecular masses are derived to be $3.86 \times 10^{4}\, M_\odot$, $2.67 \times 10^{4}\, M_{\odot }$, and $8.1\times 10^{5}\, M_{\odot }$ for Orion A, Aquila Rift, and M17, respectively. For all the clouds, the H2 column density exceeds the theoretical threshold for high-mass star formation of ≳ 1 g cm−2 only toward the regions which contain current high-mass star-forming sites. For other areas, further mass accretion or dynamical compression would be necessary for future high-mass star formation. This is consistent with the current star formation activity. Using the 12CO data, we demonstrate that our data have enough capability to identify molecular outflows, and for the Aquila Rift we identify four new outflow candidates. The scientific results will be discussed in detail in separate papers.


Author(s):  
Hidetoshi Sano ◽  
Kisetsu Tsuge ◽  
Kazuki Tokuda ◽  
Kazuyuki Muraoka ◽  
Kengo Tachihara ◽  
...  

Abstract We report the first evidence for high-mass star formation triggered by collisions of molecular clouds in M 33. Using the Atacama Large Millimeter/submillimeter Array, we spatially resolved filamentary structures of giant molecular cloud 37 in M 33 using 12CO(J = 2–1), 13CO(J = 2–1), and C18O(J = 2–1) line emission at a spatial resolution of ∼2 pc. There are two individual molecular clouds with a systematic velocity difference of ∼6 km s−1. Three continuum sources representing up to ∼10 high-mass stars with spectral types of B0V–O7.5V are embedded within the densest parts of molecular clouds bright in the C18O(J = 2–1) line emission. The two molecular clouds show a complementary spatial distribution with a spatial displacement of ∼6.2 pc, and show a V-shaped structure in the position–velocity diagram. These observational features traced by CO and its isotopes are consistent with those in high-mass star-forming regions created by cloud–cloud collisions in the Galactic and Magellanic Cloud H ii regions. Our new finding in M 33 indicates that cloud–cloud collision is a promising process for triggering high-mass star formation in the Local Group.


2005 ◽  
Vol 13 ◽  
pp. 851-853 ◽  
Author(s):  
A. B. Peck ◽  
A. Tarchi ◽  
C. Henkel ◽  
N. M. Nagar ◽  
J. Braatz ◽  
...  

AbstractWe report new detections of three H2O megamasers and one kilomaser using the Effelsberg 100-m telescope. Isotropic luminosities are ~50, 300, 1, and 230 L⊙ for Mrk 1066, Mrk 34, NGC 3556, and Arp 299, respectively. Mrk 34 contains the most distant H2O megamaser ever detected in a Seyfert. Our targets in this survey were chosen to fit one of the following criteria: 1) to have a high probability of interaction between the radio jet and the ISM within the central few parsecs of the radio galaxy, yielding masers which arise in local molecular clouds; or 2) to have very bright IRAS sources in which massive star forming regions might yield powerful masers. The ‘jet maser’ sources can provide detailed information about the conditions in the ISM in the central 1-10 pc of AGN. The extra-galactic ‘star formation masers’ can be used to pinpoint and characterize locations of high mass star formation in nearby galaxies. In addition, these sources will help to provide a better understanding of the chemical properties of molecular clouds in extra-galactic systems.


2020 ◽  
Vol 500 (3) ◽  
pp. 3027-3049 ◽  
Author(s):  
A Duarte-Cabral ◽  
D Colombo ◽  
J S Urquhart ◽  
A Ginsburg ◽  
D Russeil ◽  
...  

ABSTRACT We use the 13CO (2–1) emission from the SEDIGISM (Structure, Excitation, and Dynamics of the Inner Galactic InterStellar Medium) high-resolution spectral-line survey of the inner Galaxy, to extract the molecular cloud population with a large dynamic range in spatial scales, using the Spectral Clustering for Interstellar Molecular Emission Segmentation (scimes) algorithm. This work compiles a cloud catalogue with a total of 10 663 molecular clouds, 10 300 of which we were able to assign distances and compute physical properties. We study some of the global properties of clouds using a science sample, consisting of 6664 well-resolved sources and for which the distance estimates are reliable. In particular, we compare the scaling relations retrieved from SEDIGISM to those of other surveys, and we explore the properties of clouds with and without high-mass star formation. Our results suggest that there is no single global property of a cloud that determines its ability to form massive stars, although we find combined trends of increasing mass, size, surface density, and velocity dispersion for the sub-sample of clouds with ongoing high-mass star formation. We then isolate the most extreme clouds in the SEDIGISM sample (i.e. clouds in the tails of the distributions) to look at their overall Galactic distribution, in search for hints of environmental effects. We find that, for most properties, the Galactic distribution of the most extreme clouds is only marginally different to that of the global cloud population. The Galactic distribution of the largest clouds, the turbulent clouds and the high-mass star-forming clouds are those that deviate most significantly from the global cloud population. We also find that the least dynamically active clouds (with low velocity dispersion or low virial parameter) are situated further afield, mostly in the least populated areas. However, we suspect that part of these trends may be affected by some observational biases (such as completeness and survey limitations), and thus require further follow up work in order to be confirmed.


Author(s):  
A J Rigby ◽  
N Peretto ◽  
R Adam ◽  
P Ade ◽  
M Anderson ◽  
...  

Abstract Determining the mechanism by which high-mass stars are formed is essential for our understanding of the energy budget and chemical evolution of galaxies. By using the New IRAM KIDs Array 2 (NIKA2) camera on the Institut de Radio Astronomie Millimétrique (IRAM) 30-m telescope, we have conducted high-sensitivity and large-scale mapping of a fraction of the Galactic plane in order to search for signatures of the transition between the high- and low-mass star-forming modes. Here, we present the first results from the Galactic Star Formation with NIKA2 (GASTON) project, a Large Programme at the IRAM 30-m telescope which is mapping ≈2 deg2 of the inner Galactic plane (GP), centred on ℓ = 23${_{.}^{\circ}}$9, b = 0${_{.}^{\circ}}$05, as well as targets in Taurus and Ophiuchus in 1.15 and 2.00 mm continuum wavebands. In this paper we present the first of the GASTON GP data taken, and present initial science results. We conduct an extraction of structures from the 1.15 mm maps using a dendrogram analysis and, by comparison to the compact source catalogues from Herschel survey data, we identify a population of 321 previously-undetected clumps. Approximately 80 per cent of these new clumps are 70 μm-quiet, and may be considered as starless candidates. We find that this new population of clumps are less massive and cooler, on average, than clumps that have already been identified. Further, by classifying the full sample of clumps based upon their infrared-bright fraction – an indicator of evolutionary stage – we find evidence for clump mass growth, supporting models of clump-fed high-mass star formation.


2012 ◽  
Vol 538 ◽  
pp. A140 ◽  
Author(s):  
P. D. Klaassen ◽  
L. Testi ◽  
H. Beuther

2018 ◽  
Vol 609 ◽  
pp. A129 ◽  
Author(s):  
L. Colzi ◽  
F. Fontani ◽  
P. Caselli ◽  
C. Ceccarelli ◽  
P. Hily-Blant ◽  
...  

The ratio between the two stable isotopes of nitrogen, 14N and 15N, is well measured in the terrestrial atmosphere (~272), and for the pre-solar nebula (~441, deduced from the solar wind). Interestingly, some pristine solar system materials show enrichments in 15N with respect to the pre-solar nebula value. However, it is not yet clear if and how these enrichments are linked to the past chemical history because we have only a limited number of measurements in dense star-forming regions. In this respect, dense cores, which are believed to be the precursors of clusters and also contain intermediate- and high-mass stars, are important targets because the solar system was probably born within a rich stellar cluster, and such clusters are formed in high-mass star-forming regions. The number of observations in such high-mass dense cores has remained limited so far. In this work, we show the results of IRAM-30 m observations of the J = 1−0 rotational transition of the molecules HCN and HNC and their 15N-bearing counterparts towards 27 intermediate- and high-mass dense cores that are divided almost equally into three evolutionary categories: high-mass starless cores, high-mass protostellar objects, and ultra-compact Hii regions. We have also observed the DNC(2–1) rotational transition in order to search for a relation between the isotopic ratios D/H and 14N/15N. We derive average 14N/15N ratios of 359 ± 16 in HCN and of 438 ± 21 in HNC, with a dispersion of about 150–200. We find no trend of the 14N/15N ratio with evolutionary stage. This result agrees with what has been found for N2H+ and its isotopologues in the same sources, although the 14N/15N ratios from N2H+ show a higher dispersion than in HCN/HNC, and on average, their uncertainties are larger as well. Moreover, we have found no correlation between D/H and 14N/15N in HNC. These findings indicate that (1) the chemical evolution does not seem to play a role in the fractionation of nitrogen, and that (2) the fractionation of hydrogen and nitrogen in these objects is not related.


Sign in / Sign up

Export Citation Format

Share Document