scholarly journals HST/COS Observations of the Warm Ionized Gaseous Halo of NGC 891

2019 ◽  
Vol 876 (2) ◽  
pp. 101 ◽  
Author(s):  
Zhijie Qu ◽  
Joel N. Bregman ◽  
Edmund J. Hodges-Kluck
Keyword(s):  
2011 ◽  
Vol 737 (1) ◽  
pp. 22 ◽  
Author(s):  
Michael E. Anderson ◽  
Joel N. Bregman
Keyword(s):  

2020 ◽  
Vol 498 (4) ◽  
pp. 4983-5002
Author(s):  
D Wittor ◽  
M Gaspari

ABSTRACT Turbulence in the intracluster, intragroup, and circumgalactic medium plays a crucial role in the self-regulated feeding and feedback loop of central supermassive black holes. We dissect the 3D turbulent ‘weather’ in a high-resolution Eulerian simulation of active galactic nucleus (AGN) feedback, shown to be consistent with multiple multiwavelength observables of massive galaxies. We carry out post-processing simulations of Lagrangian tracers to track the evolution of enstrophy, a proxy of turbulence, and its related sinks and sources. This allows us to isolate in depth the physical processes that determine the evolution of turbulence during the recurring strong and weak AGN feedback events, which repeat self-similarly over the Gyr evolution. We find that the evolution of enstrophy/turbulence in the gaseous halo is highly dynamic and variable over small temporal and spatial scales, similar to the chaotic weather processes on Earth. We observe major correlations between the enstrophy amplification and recurrent AGN activity, especially via its kinetic power. While advective and baroclinc motions are always subdominant, stretching motions are the key sources of the amplification of enstrophy, in particular along the jet/cocoon, while rarefactions decrease it throughout the bulk of the volume. This natural self-regulation is able to preserve, as ensemble, the typically observed subsonic turbulence during cosmic time, superposed by recurrent spikes via impulsive anisotropic AGN features (wide outflows, bubbles, cocoon shocks). This study facilitates the preparation and interpretation of the thermo-kinematical observations enabled by new revolutionary X-ray integral field unit telescopes, such as XRISM and Athena.


1996 ◽  
Vol 461 ◽  
pp. 724 ◽  
Author(s):  
Michael Dahlem ◽  
Timothy M. Heckman ◽  
Giuseppina Fabbiano ◽  
Matthew D. Lehnert ◽  
Diane Gilmore
Keyword(s):  

2004 ◽  
Vol 217 ◽  
pp. 406-411 ◽  
Author(s):  
M. E. Putman ◽  
C. Thom ◽  
B. K. Gibson ◽  
L. Staveley-Smith

The possibility of a gaseous halo stream which was stripped from the Sagittarius dwarf galaxy is presented. The total mass of the neutral hydrogen along the orbit of the Sgr dwarf in the direction of the Galactic Anti-Center is 4 − 10 × 106 M⊙ (at 36 kpc, the distance to the stellar debris in this region). Both the stellar and gaseous components have negative velocities in this part of the sky, but the gaseous component extends to higher negative velocities. We suggest this gaseous stream was stripped from the main body of the dwarf 0.2 – 0.3 Gyr ago during its current orbit after a passage through a diffuse edge of the Galactic disk with a density > 10−4 cm−3. The gas would then represent the dwarf's last source of star formation fuel and explains how the galaxy was forming stars 0.5-2 Gyr ago.


2004 ◽  
Vol 217 ◽  
pp. 412-417
Author(s):  
X. Y. Xia ◽  
Z. Y. Huo ◽  
S. J. Xue

We report on the properties of the hot gaseous halos of 10 nearby ultraluminous IRAS galaxies from Chandra observations. There exists diffuse soft X-ray emission surrounding the central nucleus within 10 kpc of the nuclear region with a temperature of about 0.7 keV and metallicity about Z ~ 1.0Z⊙. Also, emission lines from α elements and ions for are seen in all nearby ULIRGs in our sample. Outside the central region, the Chandra observations reveal a more extended hot gaseous halo with a temperature of about 0.6 keV and low metallicity (Z ~ 0.1Z⊙) for some of the ULIRGs. We discuss the nature and the implications of our results for the origin of X-ray halos in elliptical galaxies and the constraints this places on the feedback process.


1985 ◽  
Vol 106 ◽  
pp. 415-420
Author(s):  
Klaas S. De Boer

The detection in absorption lines of gas clouds outside the galactic plane at high velocities by Münch and Zirin (1961), high velocities then defined as velocities differing by more than 20 km/s from the LSR, showed that the space outside the Milky-Way disk contains not just stars. Of course, from a continuity argument it had been all along clear that some transition zone had to exist between the dense (relatively speaking) gas of the Milky-Way plane and the vast (almost) emptiness of intergalactic space. The presence of these clouds requires a mechanism to prevent their evaporation, and Spitzer (1956) proposed that dilute hot gas had to exist outside the Milky-Way disk reaching, in his hydrostatic-equilibrium model, temperatures of a few million K at several tens of kpc. These high temperatures led him to name these gases the Galactic Corona. Observational confirmation of the abundance of these cool clouds came from the measurements of 21-cm HI emission, but no one-to-one correspondence with clouds detected in the visual did appear (Habing 1969). For the majority of the high-velocity (HV) clouds (Hulsbosch 1978) no distances are known, and all of those are believed to exist as a gaseous halo with the halo stars. Thus our Milky Way appears to have outside the disk: a halo, a gaseous halo, and a corona.


2018 ◽  
Vol 867 (1) ◽  
pp. 73 ◽  
Author(s):  
A. Sokołowska ◽  
A. Babul ◽  
L. Mayer ◽  
S. Shen ◽  
P. Madau
Keyword(s):  
X Ray ◽  

1982 ◽  
Vol 257 ◽  
pp. 587 ◽  
Author(s):  
J. V. Feitzinger ◽  
T. Schmidt-Kaler

Sign in / Sign up

Export Citation Format

Share Document