scholarly journals The Galaxy's Eating Habits

2004 ◽  
Vol 217 ◽  
pp. 406-411 ◽  
Author(s):  
M. E. Putman ◽  
C. Thom ◽  
B. K. Gibson ◽  
L. Staveley-Smith

The possibility of a gaseous halo stream which was stripped from the Sagittarius dwarf galaxy is presented. The total mass of the neutral hydrogen along the orbit of the Sgr dwarf in the direction of the Galactic Anti-Center is 4 − 10 × 106 M⊙ (at 36 kpc, the distance to the stellar debris in this region). Both the stellar and gaseous components have negative velocities in this part of the sky, but the gaseous component extends to higher negative velocities. We suggest this gaseous stream was stripped from the main body of the dwarf 0.2 – 0.3 Gyr ago during its current orbit after a passage through a diffuse edge of the Galactic disk with a density > 10−4 cm−3. The gas would then represent the dwarf's last source of star formation fuel and explains how the galaxy was forming stars 0.5-2 Gyr ago.

2018 ◽  
Vol 614 ◽  
pp. A130 ◽  
Author(s):  
K. George ◽  
P Joseph ◽  
P. Côté ◽  
S. K. Ghosh ◽  
J. B. Hutchings ◽  
...  

Context. The tidal tails of post-merger galaxies exhibit ongoing star formation far from their disks. The study of such systems can be useful for our understanding of gas condensation in diverse environments. Aims. The ongoing star formation in the tidal tails of post-merger galaxies can be directly studied from ultraviolet (UV) imaging observations. Methods. The post merger galaxy NGC7252 (“Atoms-for-Peace” galaxy) is observed with the Astrosat UV imaging telescope (UVIT) in broadband NUV and FUV filters to isolate the star-forming regions in the tidal tails and study the spatial variation in star formation rates. Results. Based on ultraviolet imaging observations, we discuss star-forming regions of ages <200 Myr in the tidal tails. We measure star formation rates in these regions and in the main body of the galaxy. The integrated star formation rate (SFR) of NGC7252 (i.e., that in the galaxy and tidal tails combined) without correcting for extinction is found to be 0.81 ± 0.01 M⊙ yr−1. We show that the integrated SFR can change by an order of magnitude if the extinction correction used in SFR derived from other proxies are taken into consideration. The star formation rates in the associated tidal dwarf galaxies (NGC7252E, SFR = 0.02 M⊙ yr−1 and NGC7252NW, SFR = 0.03 M⊙ yr−1) are typical of dwarf galaxies in the local Universe. The spatial resolution of the UV images reveals a gradient in star formation within the tidal dwarf galaxy. The star formation rates show a dependence on the distance from the centre of the galaxy. This can be due to the different initial conditions responsible for the triggering of star formation in the gas reservoir that was expelled during the recent merger in NGC7252.


1996 ◽  
Vol 171 ◽  
pp. 3-10
Author(s):  
K.C. Freeman

The accretion of small satellite galaxies appears to have been important in the formation of the metal-poor halo of the Galaxy. The disrupting Sgr dwarf galaxy and the recent discovery of a young, metal-poor component of the halo indicate that this is a continuing process. The evolution of the galactic disk, and some consequences of the bar-like nature of the galactic bulge are briefly discussed.


2018 ◽  
Vol 620 ◽  
pp. A133 ◽  
Author(s):  
T. Richtler ◽  
M. Hilker ◽  
K. Voggel ◽  
T. H. Puzia ◽  
R. Salinas ◽  
...  

Context. The isolated elliptical (IE) NGC 7796 is accompanied by an interesting early-type dwarf galaxy, named NGC 7796-DW1. It exhibits a tidal tail, very boxy isophotes, and multiple nuclei or regions (A, B, and C) that are bluer than the bulk population of the galaxy, indicating a younger age. These properties are suggestive of a dwarf–dwarf merger remnant. Aims. Dwarf–dwarf mergers are poorly understood, but may have a high importance for dwarf galaxy evolution. We want to investigate the properties of the dwarf galaxy and its components to find more evidence for a dwarf–dwarf merger or for alternative formation scenarios. Methods. We use the Multi-Unit Spectroscopic Explorer (MUSE) at the VLT to investigate NGC 7796-DW1. We extract characteristic spectra to which we apply the STARLIGHT population synthesis software to obtain ages and metallicities of the various population components of the galaxy. This permits us to isolate the emission lines for which fluxes and flux ratios can be measured and to which strong-line diagnostic tools can be applied. Results. The galaxy’s main body is old and metal-poor. A surprising result is the extended line emission in the galaxy, forming a ring-like structure with a projected diameter of 2.2 kpc. The line ratios fall into the regime of HII-regions, although OB-stellar populations cannot be identified by spectral signatures. The low Hα surface brightnesses indicate unresolved star-forming substructures, which means that broad-band colours are not reliable age or metallicity indicators. Nucleus A is a relatively old (7 Gyr or older) and metalpoor super star cluster, most probably the nucleus of the dwarf, now displaced. The star-forming regions B and C show younger and distinctly more metal-rich components. The emission line ratios of regions B and C indicate an almost solar oxygen abundance, if compared with radiation models of HII regions. Oxygen abundances from empirical calibrations point to only half-solar. The ring-like Hα-structure does not exhibit signs of rotation or orbital movements. Conclusions. NGC 7796-DW1 occupies a particular role in the group of transition-type galaxies with respect to its origin and current evolutionary state, being the companion of an IE. The dwarf–dwarf merger scenario is excluded because of the missing metal-rich merger component. A viable alternative is gas accretion from a reservoir of cold, metal-rich gas. NGC 7796 has to provide this gas within its X-ray bright halo. As illustrated by NGC 7796-DW1, cold accretion may be a general solution to the problem of extended star formation histories in transition dwarf galaxies.


2022 ◽  
Vol 924 (2) ◽  
pp. 87
Author(s):  
J. Christopher Mihos ◽  
Patrick R. Durrell ◽  
Elisa Toloba ◽  
Patrick Côté ◽  
Laura Ferrarese ◽  
...  

Abstract We use deep Hubble Space Telescope imaging to derive a distance to the Virgo Cluster ultradiffuse galaxy (UDG) VCC 615 using the tip of the red giant branch (TRGB) distance estimator. We detect 5023 stars within the galaxy, down to a 50% completeness limit of F814W ≈ 28.0, using counts in the surrounding field to correct for contamination due to background sources and Virgo intracluster stars. We derive an extinction-corrected F814W tip magnitude of m tip , 0 = 27.19 − 0.05 + 0.07 , yielding a distance of d = 17.7 − 0.4 + 0.6 Mpc. This places VCC 615 on the far side of the Virgo Cluster (d Virgo = 16.5 Mpc), at a Virgocentric distance of 1.3 Mpc and near the virial radius of the main body of Virgo. Coupling this distance with the galaxy’s observed radial velocity, we find that VCC 615 is on an outbound trajectory, having survived a recent passage through the inner parts of the cluster. Indeed, our orbit modeling gives a 50% chance the galaxy passed inside the Virgo core (r < 620 kpc) within the past gigayear, although very close passages directly through the cluster center (r < 200 kpc) are unlikely. Given VCC 615's undisturbed morphology, we argue that the galaxy has experienced no recent and sudden transformation into a UDG due to the cluster potential, but rather is a long-lived UDG whose relatively wide orbit and large dynamical mass protect it from stripping and destruction by the Virgo cluster tides. Finally, we also describe the serendipitous discovery of a nearby Virgo dwarf galaxy projected 90″ (7.2 kpc) away from VCC 615.


2018 ◽  
Vol 14 (S344) ◽  
pp. 42-45
Author(s):  
L. Sbordone ◽  
L. Monaco ◽  
S. Duffau ◽  
P. Bonifacio ◽  
E. Caffau

AbstractWe present the status of an ongoing project to map the detailed chemical abundances of stars across the main body of the Sagittarius dwarf Spheroidal galaxy (Sgr dSph). The Sgr dSph is the closest known dwarf galaxy, and is being tidally destroyed by its interaction with the Milky Way (MW), leaving behind a massive stellar stream. Sgr dSph is a chemically outstanding object, with peculiar abundance ratios, clear center-outskirts abundance gradients, and spanning more than 3 orders of magnitude in metallicity. We present here detailed abundances from UVES@VLT spectra for more than 50 giants across 8 fields along the major and minor axes of Sgr dSph, and 5 more outside the galaxy main body, but possibly associated to its stellar stream.


1989 ◽  
Vol 136 ◽  
pp. 77-87 ◽  
Author(s):  
Robert H. Sanders

It is shown that the observed motion of neutral hydrogen in the inner 1000 pc of the Galaxy is, for the most part, consistent with flow on circular streamlines in the potential of the Galactic bulge as derived from the observed distribution of near infrared emission. The implied mass distribution is also consistent with recent kinematic determinations of the stellar mass in the inner few parsecs of the bulge. The non-circular gas motion seen between two and four kpc is most likely due to flow on elliptical streamlines in the presence of a weak bar distortion of the Galactic disk. Circular gas motion in the region of the bulge and elliptical streaming further out is an observed characteristic of flow in barred galaxies and is consistent with our present theoretical understanding of such systems. The implication is that non-circular motions of the molecular clouds in the inner 200 pc have a non-gravitational origin. A possible mechanism for exciting such motions is an accretion event resulting from an encounter of a molecular cloud with a massive black hole. A starburst leading to a high supernovae rate 107 years ago in the inner 50 pc is an alternative explanation. Observations of molecular cloud regions in the nuclei of external normal galaxies could distinguish between alternative mechanisms.


1962 ◽  
Vol 15 (3) ◽  
pp. 369 ◽  
Author(s):  
DS Mathewson ◽  
JR Healey ◽  
JM Rome

The 1440 Mcls survey (Part I of this series) has been used in conjunction with the 85�5Mc/s survey of Hill, Slee, and Mills (1958) to delineate the distribution of the thermal and nonthermal radiation from the disk component of the Southern Milky Way and so complete an investigation commenced by the Northern Hemisphere observers Westerhout (Leiden) and Large, Mathewson, and Haslam (Jodrell Bank). Results of the analysis show an intense concent,ration of ionized hydrogen in an irregular spiral structure in the inner regions of the Galaxy. From lII=256� to 88�, good agreement was obtained between the longitudes at which concentrations of neutral hydrogen were found to occur from H-line studies and the longitudes at which the ionized hydrogen was concentrated. The steps in the longitude distribution of the 85�5 Mcls radiation which Mills used to delineate the spiral arms of the Galaxy were not all visible in the longitude distribution of the nonthermal component obtained from this present analysis. It is believed that three of Mills's steps are thermal in origin.


1967 ◽  
Vol 31 ◽  
pp. 239-251 ◽  
Author(s):  
F. J. Kerr

A review is given of information on the galactic-centre region obtained from recent observations of the 21-cm line from neutral hydrogen, the 18-cm group of OH lines, a hydrogen recombination line at 6 cm wavelength, and the continuum emission from ionized hydrogen.Both inward and outward motions are important in this region, in addition to rotation. Several types of observation indicate the presence of material in features inclined to the galactic plane. The relationship between the H and OH concentrations is not yet clear, but a rough picture of the central region can be proposed.


2020 ◽  
Vol 500 (2) ◽  
pp. 2514-2524
Author(s):  
Joel Pfeffer ◽  
Carmela Lardo ◽  
Nate Bastian ◽  
Sara Saracino ◽  
Sebastian Kamann

ABSTRACT A number of the massive clusters in the halo, bulge, and disc of the Galaxy are not genuine globular clusters (GCs) but instead are different beasts altogether. They are the remnant nuclear star clusters (NSCs) of ancient galaxies since accreted by the Milky Way. While some clusters are readily identifiable as NSCs and can be readily traced back to their host galaxy (e.g. M54 and the Sagittarius Dwarf galaxy), others have proven more elusive. Here, we combine a number of independent constraints, focusing on their internal abundances and overall kinematics, to find NSCs accreted by the Galaxy and trace them to their accretion event. We find that the true NSCs accreted by the Galaxy are: M54 from the Sagittarius Dwarf, ω Centari from Gaia-Enceladus/Sausage, NGC 6273 from Kraken, and (potentially) NGC 6934 from the Helmi Streams. These NSCs are prime candidates for searches of intermediate-mass black holes (BHs) within star clusters, given the common occurrence of galaxies hosting both NSCs and central massive BHs. No NSC appears to be associated with Sequoia or other minor accretion events. Other claimed NSCs are shown not to be such. We also discuss the peculiar case of Terzan 5, which may represent a unique case of a cluster–cluster merger.


2012 ◽  
Vol 756 (1) ◽  
pp. 74 ◽  
Author(s):  
Peter M. Frinchaboy ◽  
Steven R. Majewski ◽  
Ricardo R. Muñoz ◽  
David R. Law ◽  
Ewa L. Łokas ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document