scholarly journals Large-scale Structures in the CANDELS Fields: The Role of the Environment in Star Formation Activity

2020 ◽  
Vol 890 (1) ◽  
pp. 7 ◽  
Author(s):  
Nima Chartab ◽  
Bahram Mobasher ◽  
Behnam Darvish ◽  
Steve Finkelstein ◽  
Yicheng Guo ◽  
...  
2009 ◽  
Vol 507 (2) ◽  
pp. 671-682 ◽  
Author(s):  
M. Tanaka ◽  
C. Lidman ◽  
R. G. Bower ◽  
R. Demarco ◽  
A. Finoguenov ◽  
...  

Universe ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 92 ◽  
Author(s):  
Jérôme Martin

According to the theory of cosmic inflation, the large scale structures observed in our Universe (galaxies, clusters of galaxies, Cosmic Background Microwave—CMB—anisotropy...) are of quantum mechanical origin. They are nothing but vacuum fluctuations, stretched to cosmological scales by the cosmic expansion and amplified by gravitational instability. At the end of inflation, these perturbations are placed in a two-mode squeezed state with the strongest squeezing ever produced in Nature (much larger than anything that can be made in the laboratory on Earth). This article studies whether astrophysical observations could unambiguously reveal this quantum origin by borrowing ideas from quantum information theory. It is argued that some of the tools needed to carry out this task have been discussed long ago by J. Bell in a, so far, largely unrecognized contribution. A detailled study of his paper and of the criticisms that have been put forward against his work is presented. Although J. Bell could not have realized it when he wrote his letter since the quantum state of cosmological perturbations was not yet fully characterized at that time, it is also shown that Cosmology and cosmic inflation represent the most interesting frameworks to apply the concepts he investigated. This confirms that cosmic inflation is not only a successful paradigm to understand the early Universe. It is also the only situation in Physics where one crucially needs General Relativity and Quantum Mechanics to derive the predictions of a theory and, where, at the same time, we have high-accuracy data to test these predictions, making inflation a playground of utmost importance to discuss foundational issues in Quantum Mechanics.


2010 ◽  
Vol 6 (S277) ◽  
pp. 309-312
Author(s):  
Louise O. V. Edwards ◽  
Dario Fadda

AbstractGalaxies are found to inhabit a variety of environments. They are often found in pairs, groups, or clusters. Cosmological simulations predict that these clusters are connected on a larger scale by filaments, but because these large scale structures are so vast, and because they are of intermediate density, observational constraints on their properties are difficult to achieve. We find a large-scale filament in the Abell 1763-Abell 1770 superstructure, determine that the star-formation therein is enhanced, and uncover a bent double lobe radio source midway across the filament. From the bend of this AGN'a jets, we probe the density of the surrounding intra-filament medium (IFM), constrained to be between 1-20x10−29 gm/cm3. This density is consistent with direct probes of the IFM as well as theoretical models.


1977 ◽  
Vol 20 (10) ◽  
pp. S290
Author(s):  
J. Laufer ◽  
F. K. Browand ◽  
R. A. Petersen

2020 ◽  
Vol 641 ◽  
pp. A151
Author(s):  
F. Salvestrini ◽  
C. Gruppioni ◽  
F. Pozzi ◽  
C. Vignali ◽  
A. Giannetti ◽  
...  

We present a multi-wavelength study (from X-ray to mm) of the nearby low-luminosity active galactic nucleus NGC 7213. We combine the information from the different bands to characterise the source in terms of contribution from the AGN and the host-galaxy interstellar medium. This approach allows us to provide a coherent picture of the role of the AGN and its impact, if any, on the star formation and molecular gas properties of the host galaxy. We focused our study on archival ALMA Cycle 1 observations, where the CO(2–1) emission line has been used as a tracer of the molecular gas. Using the 3DBAROLO code on ALMA data, we performed the modelling of the molecular gas kinematics traced by the CO(2–1) emission, finding a rotationally dominated pattern. The molecular gas mass of the host galaxy was estimated from the integrated CO(2–1) emission line obtained with APEX data, assuming an αCO conversion factor. Had we used the ALMA data, we would have underestimated the gas masses by a factor ∼3, given the filtering out of the large-scale emission in interferometric observations. We also performed a complete X-ray spectral analysis on archival observations, revealing a relatively faint and unobscured AGN. The AGN proved to be too faint to significantly affect the properties of the host galaxy, such as star formation activity and molecular gas kinematics and distribution.


Sign in / Sign up

Export Citation Format

Share Document