scholarly journals On the Power to Constrain the Accretion History of Massive Black Holes via Spin Measurements by Upcoming X-Ray Telescopes

2020 ◽  
Vol 896 (1) ◽  
pp. 87 ◽  
Author(s):  
Xiaoxia Zhang ◽  
Youjun Lu ◽  
Dandan Wang ◽  
Taotao Fang
2019 ◽  
Vol 15 (S356) ◽  
pp. 143-143
Author(s):  
Jaya Maithil ◽  
Michael S. Brotherton ◽  
Bin Luo ◽  
Ohad Shemmer ◽  
Sarah C. Gallagher ◽  
...  

AbstractActive Galactic Nuclei (AGN) exhibit multi-wavelength properties that are representative of the underlying physical processes taking place in the vicinity of the accreting supermassive black hole. The black hole mass and the accretion rate are fundamental for understanding the growth of black holes, their evolution, and the impact on the host galaxies. Recent results on reverberation-mapped AGNs show that the highest accretion rate objects have systematic shorter time-lags. These super-Eddington accreting massive black holes (SEAMBHs) show BLR size 3-8 times smaller than predicted by the Radius-Luminosity (R-L) relationship. Hence, the single-epoch virial black hole mass estimates of highly accreting AGNs have an overestimation of a factor of 3-8 times. SEAMBHs likely have a slim accretion disk rather than a thin disk that is diagnostic in X-ray. I will present the extreme X-ray properties of a sample of dozen of SEAMBHs. They indeed have a steep hard X-ray photon index, Γ, and demonstrate a steeper power-law slope, ασx.


Author(s):  
S Sazonov ◽  
I Khabibullin

Abstract There is a hope that looking into the early Universe with next-generation telescopes, one will be able to observe the early accretion growth of supermassive black holes (BHs) when their masses were ∼104–106M⊙. According to the standard accretion theory, the bulk of the gravitational potential energy released by radiatively efficient accretion of matter onto a BH in this mass range is expected to be emitted in the extreme UV–ultrasoft X-ray bands. We demonstrate that such a ’miniquasar’ at z ∼ 15 should leave a specific, localized imprint on the 21 cm cosmological signal. Namely, its position on the sky will be surrounded by a region with a fairly sharp boundary of several arcmin radius, within which the 21 cm brightness temperature quickly grows inwards from the background value of ∼−250 mK to ∼+30 mK. The size of this region is only weakly sensitive to the BH mass, so that the flux density of the excess 21 cm signal is expected to be ∼0.1–0.2 mJy at z ∼ 15 and should be detectable by the Square Kilometer Array. We argue that an optimal strategy would be to search for such signals from high-z miniquasar candidates that can be found and localized with a next-generation X-ray mission such as Lynx. A detection of the predicted 21 cm signal would provide a measurement of the growing BH’s redshift to within Δz/(1 + z) ≲ 0.01.


2009 ◽  
Vol 5 (H15) ◽  
pp. 269-270
Author(s):  
Dong-Woo Kim ◽  
Silvia Pellegrini

The physical properties of the hot interstellar matter in elliptical galaxies are directly related with the formation and evolution of elliptical galaxies via star formation episodes, environmental effects such as stripping, infall, and mergers, and growth of super-massive black holes. The recent successful Chandra and XMM-Newton X-ray space missions have provided a large amount of high spatial/spectral resolution observational data on the hot ISM in elliptical galaxies. At the same time, theoretical studies with numerical simulations and analytical modeling of the dynamical and chemical evolution of elliptical galaxies have made a significant progress and start to predict various observable quantities.


Author(s):  
D. A. BUOTE ◽  
P. J. HUMPHREY ◽  
F. BRIGHENTI ◽  
K. GEBHARDT ◽  
W. G. MATHEWS

2006 ◽  
Vol 2 (S238) ◽  
pp. 3-12 ◽  
Author(s):  
Jorge Casares

AbstractRadial velocity studies of X-ray binaries provide the most solid evidence for the existence of stellar-mass black holes. We currently have 20 confirmed cases, with dynamical masses in excess of 3 M⊙. Accurate masses have been obtained for a subset of systems which gives us a hint at the mass spectrum of the black hole population. This review summarizes the history of black hole discoveries and presents the latest results in the field.


2012 ◽  
Vol 08 ◽  
pp. 396-399 ◽  
Author(s):  
ELEONORA TORRESI ◽  
PAOLA GRANDI ◽  
ELISA COSTANTINI ◽  
GIORGIO G. C. PALUMBO

One of the main debated astrophysical problems is the role of the AGN feedback in galaxy formation. It is known that massive black holes have a profound effect on the formation and evolution of galaxies, but how black holes and galaxies communicate is still an unsolved problem. For Radio Galaxies, feedback studies have mainly focused on jet/cavity systems in the most massive and X–ray luminous galaxy clusters. The recent high–resolution detection of warm absorbers in some Broad Line Radio Galaxies allow us to investigate the interplay between the nuclear engine and the surrounding medium from a different perspective. We report on the detection of warm absorbers in two Broad Line Radio Galaxies, 3C 382 and 3C 390.3, and discuss the physical and energetic properties of the absorbing gas. Finally, we attempt a comparison between radio–loud and radio–quiet outflows.


2004 ◽  
pp. 227-230 ◽  
Author(s):  
Marta Volonteri ◽  
Francesco Haardt ◽  
Piero Madau ◽  
Alberto Sesana

Sign in / Sign up

Export Citation Format

Share Document