scholarly journals The Coupling of Galactic Dark Matter Halos with Stellar Bars

2021 ◽  
Vol 915 (1) ◽  
pp. 23
Author(s):  
Angela Collier ◽  
Ann-Marie Madigan
2006 ◽  
Vol 645 (2) ◽  
pp. 1001-1011 ◽  
Author(s):  
Francisco Prada ◽  
Anatoly A. Klypin ◽  
Eduardo Simonneau ◽  
Juan Betancort‐Rijo ◽  
Santiago Patiri ◽  
...  

Author(s):  
Nupur Paul ◽  
Farook Rahaman ◽  
Nasarul Islam ◽  
S.S. De

Galactic dark matter is an active area of research in recent time. Several researchers proposed several descriptions of radial profiles of dark matter halos by using N-body simulations. Among them, Navarro, Frenk and White (NFW) dark matter profile provides the most accurate description of dark matter halos. It is believed that dark matter is smooth and distributed uniformly throughout space. Using Finslerian geometrical background and a specific equation of state, we propose a new way to estimate the rotational velocity of galaxies based on the NFW dark matter profile. On small scales the first few distances (about 30 kpc) the velocity increases whereas in the outer region of the galaxies, the rotational velocity is found to be more or less constant which supports observed rotational velocities.


2019 ◽  
Vol 626 ◽  
pp. A5 ◽  
Author(s):  
H. Socas-Navarro

A recent study by Farnes (2018, A&A, 620, A92) proposed an alternative cosmological model in which both dark matter and dark energy are replaced with a single fluid of negative mass. This paper presents a critical review of that model. A number of problems and discrepancies with observations are identified. For instance, the predicted shape and density of galactic dark matter halos are incorrect. Also, halos would need to be less massive than the baryonic component, otherwise they would become gravitationally unstable. Perhaps the most challenging problem in this theory is the presence of a large-scale version of the “runaway effect”, which would result in all galaxies moving in random directions at nearly the speed of light. Other more general issues regarding negative mass in general relativity are discussed, such as the possibility of time-travel paradoxes.


2018 ◽  
pp. 169-174
Author(s):  
Alvaro De Rújula

What we know or do not know about dark matter. The evidence for its existence, first found by Fritz Zwicky. The “virial theorem” and the Coma cluster. The rotation curves of galaxies. Galactic dark-matter halos. Gravitational lensing and the May 1919 solar eclipse, a thiumph of General Relativity that propelled Einstein to his fame. The deflection of starlight by the eclipsed Sun. Gravitational lenses, Einstein rings, and Smilie. Gravitational-lensing and evidence for dark matter in the Bullet cluster of galaxies.


2013 ◽  
Vol 2013 (09) ◽  
pp. 034-034 ◽  
Author(s):  
F.S Guzmán ◽  
F.D Lora-Clavijo ◽  
J.J González-Avilés ◽  
F.J Rivera-Paleo

2008 ◽  
Vol 17 (03n04) ◽  
pp. 603-609
Author(s):  
M. P. SILVERMAN

Stable end-point stars currently fall into two distinct classes — white dwarfs and neutron stars — differing enormously in central density and radial size. No stable cold dead stars are thought to span the intervening densities or have masses beyond ~2–3 solar masses. I show, however, that the general-relativistic condition of hydrostatic equilibrium augmented by the equation of state of a neutron condensate at 0 K generates stable sequences of cold stars that span the density gap and can have masses well beyond prevailing limits. The radial sizes and mass limit of each sequence are determined by the mass and scattering length of the composite bosons. Solutions for hypothetical bosons of ultrasmall mass and large scattering length yield huge self-gravitating systems of low density, resembling galactic dark matter halos.


2005 ◽  
Vol 37 (4) ◽  
pp. 769-779 ◽  
Author(s):  
Tonatiuh Matos ◽  
Darío Núñez ◽  
Roberto A. Sussman

Sign in / Sign up

Export Citation Format

Share Document