Rotation Curve and Dark Matter Halo profile in Finsler Geometry

Author(s):  
Nupur Paul ◽  
Farook Rahaman ◽  
Nasarul Islam ◽  
S.S. De

Galactic dark matter is an active area of research in recent time. Several researchers proposed several descriptions of radial profiles of dark matter halos by using N-body simulations. Among them, Navarro, Frenk and White (NFW) dark matter profile provides the most accurate description of dark matter halos. It is believed that dark matter is smooth and distributed uniformly throughout space. Using Finslerian geometrical background and a specific equation of state, we propose a new way to estimate the rotational velocity of galaxies based on the NFW dark matter profile. On small scales the first few distances (about 30 kpc) the velocity increases whereas in the outer region of the galaxies, the rotational velocity is found to be more or less constant which supports observed rotational velocities.

2019 ◽  
Vol 55 (2) ◽  
pp. 231-235
Author(s):  
Sergio Grijalva Castillo ◽  
Carlos Calcáneo-Roldán

The recent success of the dark matter model has proven to be an invaluable tool for describing the formation, evolution and stability of galaxies. In this work we study the enhancement function, F , of the gravitational lensing of gravitational waves by galactic dark matter halos and show how this function may be used to distinguish between halo models. In particular we compare an isothermal sphere with an NFW type density distribution, both of which are assumed to be spherically symmetric, and find that our technique clearly distinguishes between the models.


2004 ◽  
Vol 220 ◽  
pp. 461-462 ◽  
Author(s):  
Christian Theis

The richness of tidal features seen in interacting galaxies allows for the determination of their characteristic parameters, provided one can deal with the extended parameter space. Genetic algorithm based methods – like our code minga – have proven to be such a tool. Here I discuss the implementation of dark matter halo descriptions in the restricted N-body simulations of minga. I show that the final morphology of a galaxy encounter strongly depends on the halo properties. Thus, modeling tidal features of interacting galaxies might allow also for conclusions on the galactic dark matter content.


2018 ◽  
Vol 617 ◽  
pp. A142 ◽  
Author(s):  
S. Sarkar ◽  
C. J. Jog

We study the vertical stellar distribution of the Milky Way thin disk in detail with particular focus on the outer disk. We treat the galactic disk as a gravitationally coupled, three-component system consisting of stars, atomic hydrogen gas, and molecular hydrogen gas in the gravitational field of the dark matter halo. The self-consistent vertical distribution for stars and gas in such a realistic system is obtained for radii between 4–22 kpc. The inclusion of an additional gravitating component constrains the vertical stellar distribution toward the mid-plane, so that the mid-plane density is higher, the disk thickness is reduced, and the vertical density profile is steeper than in the one-component, isothermal, stars-alone case. We show that the stellar distribution is constrained mainly by the gravitational field of gas and dark matter halo in the inner and the outer Galaxy, respectively. We find that the thickness of the stellar disk (measured as the half-width at half-maximum of the vertical density distribution) increases with radius, flaring steeply beyond R = 17 kpc. The disk thickness is reduced by a factor of 3–4 in the outer Galaxy as a result of the gravitational field of the halo, which may help the disk resist distortion at large radii. The disk would flare even more if the effect of dark matter halo were not taken into account. Thus it is crucially important to include the effect of the dark matter halo when determining the vertical structure and dynamics of a galactic disk in the outer region.


2015 ◽  
pp. 17-28 ◽  
Author(s):  
M. Smole

We follow trajectories of kicked black holes in static and evolving dark matter halo potential. We explore both NFW and Einasto dark matter density distributions. Considered dark matter halos represent hosts of massive spiral and elliptical field galaxies. We study critical amplitude of kick velocity necessary for complete black hole ejection at various redshifts and find that ~40% lower kick velocities can remove black holes from their host haloes at z = 7 compared to z = 1. The greatest difference between static and evolving potential occurs near the critical velocity for black hole ejection and at high redshifts. When NFW and Einasto density distributions are compared ~30% higher kick velocities are needed for complete removal of BHs from dark matter halo described by NFW profile.


2006 ◽  
Vol 645 (2) ◽  
pp. 1001-1011 ◽  
Author(s):  
Francisco Prada ◽  
Anatoly A. Klypin ◽  
Eduardo Simonneau ◽  
Juan Betancort‐Rijo ◽  
Santiago Patiri ◽  
...  

1999 ◽  
Vol 183 ◽  
pp. 155-155
Author(s):  
Toshiyuki Fukushige ◽  
Junichiro Makino

We performed N-body simulation on special-purpose computer, GRAPE-4, to investigate the structure of dark matter halos (Fukushige, T. and Makino, J. 1997, ApJL, 477, L9). Universal profile proposed by Navarro, Frenk, and White (1996, ApJ, 462, 563), which has cusp with density profiles ρ ∝r−1in density profile, cannot be reproduced in the standard Cold Dark Matter (CDM) picture of hierarchical clustering. Previous claims to the contrary were based on simulations with relatively few particles, and substantial softening. We performed simulations with particle numbers an order of magnitude higher, and essentially no softening, and found that typical central density profiles are clearly steeper than ρ ∝r−1, as shown in Figure 1. In addition, we confirm the presence of a temperature inversion in the inner 5 kpc of massive galactic halos, and give a natural explanation for formation of the temperature structure.


2019 ◽  
Vol 487 (3) ◽  
pp. 4025-4036 ◽  
Author(s):  
O Contigiani ◽  
E M Rossi ◽  
T Marchetti

2019 ◽  
Vol 14 (S353) ◽  
pp. 96-100
Author(s):  
Kohei Hattori ◽  
Monica Valluri

AbstractA recently discovered young, high-velocity giant star J01020100-7122208 is a good candidate of hypervelocity star ejected from the Galactic center, although it has a bound orbit. If we assume that this star was ejected from the Galactic center, it can be used to constrain the Galactic potential, because the deviation of its orbit from a purely radial orbit informs us of the torque that this star has received. Based on this assumption, we estimate the flattening of the Galactic dark matter halo by using the Gaia DR2 data and the circular velocity data. Our Bayesian analysis shows that the orbit of J01020100-7122208 favors a prolate halo within ~ 10 kpc from the Galactic center. The posterior distribution of the density flattening q shows a broad distribution at q ≳ 1 and peaks at q ≃ 1.5. Also, 98.5% of the posterior distribution is located at q > 1, highly disfavoring an oblate halo.


2004 ◽  
Vol 220 ◽  
pp. 159-164 ◽  
Author(s):  
Tommaso Treu ◽  
Léon V. E. Koopmans ◽  
David J. Sand ◽  
Graham P. Smith ◽  
Richard S. Ellis

We describe the first results from two observational projects aimed at measuring the amount and spatial distribution of dark matter in distant early-type galaxies (E/S0s) and clusters of galaxies. At the galaxy scale, the Lenses Structure and Dynamics (LSD) Survey is gathering kinematic data for distant (up to z ⋐ 1) E/S0s that are gravitational lenses. A joint lensing and dynamical analysis constrains the fraction of dark matter within the Einstein radius, the mass-to-light ratio of the stellar component, and the total slope of the mass density profile. These properties and their evolution with redshift are briefly discussed in terms of the formation and evolution of E/S0 galaxies and measurement of the Hubble Constant from gravitational time delay systems. At the cluster scale – after careful removal of the stellar component with a joint lensing and dynamical analysis – systems with giant radial arcs can be used to measure precisely the inner slope of the dark matter halo. An HST search for radial arcs and the analysis of a first sample are briefly discussed in terms of the universal dark matter halos predicted by CDM simulations.


2006 ◽  
Vol 2 (S235) ◽  
pp. 124-124
Author(s):  
J. M. Meyer ◽  
J. J. Dalcanton ◽  
T. R. Quinn ◽  
L. L. R. Williams ◽  
E. I. Barnes ◽  
...  

AbstractFor nearly a decade, N-body simulations have revealed a nearly universal dark matter density profile. This density profile appears to be robust to changes in the overall density of the universe and the underlying power spectrum. Despite its universality, however, the physical origin of this profile has not yet been well understood. Semi-analytic models have suggested that scale lengths in dark matter halos may be determined by the onset of the radial orbit instability. We have tested this theory using N-body simulations of collapsing dark matter halos. The resulting halo structures are prolate in shape, due to the mild aspect of the instability. We find that the radial orbit instability sets a scale length at which the velocity dispersion changes rapidly from isotropic to radially anisotropic. Preliminary analysis suggests that this scale length is proportional to the radius at which the density profile changes shape, as is the case in the semi-analytic models; however, the coefficient of proportionality is different by a factor of ~2. We conclude that the radial orbit instability may be a key physical mechanism responsible for the nearly universal profiles of simulated dark matter halos.


Sign in / Sign up

Export Citation Format

Share Document