scholarly journals Resonant Dynamical Friction in Nuclear Star Clusters: Rapid Alignment of an Intermediate-mass Black Hole with a Stellar Disk

2021 ◽  
Vol 919 (2) ◽  
pp. 140
Author(s):  
Ákos Szölgyén ◽  
Gergely Máthé ◽  
Bence Kocsis
2004 ◽  
Vol 607 (2) ◽  
pp. L123-L126 ◽  
Author(s):  
Sungsoo S. Kim ◽  
Donald F. Figer ◽  
Mark Morris

2009 ◽  
Vol 5 (S267) ◽  
pp. 329-329
Author(s):  
Michiko Fujii ◽  
Masaki Iwasawa ◽  
Yoko Funato ◽  
Junichiro Makino

AbstractWe performed a self-consistent N-body simulation of star clusters in the Galactic center (GC), taking into account the collisions of stars and formation of an intermediate-mass black hole (IMBH). We find that if an IMBH forms in the cluster, it carries young stars to the GC by a 1:1 resonance.


2014 ◽  
Vol 10 (S312) ◽  
pp. 213-222
Author(s):  
Mirek Giersz ◽  
Nathan Leigh ◽  
Michael Marks ◽  
Arkadiusz Hypki ◽  
Abbas Askar

AbstractWe will discuss the evolution of star clusters with a large initial binary fraction, up to 95%. The initial binary population is chosen to follow the invariant orbital-parameter distributions suggested by Kroupa (1995). The Monte Carlo MOCCA simulations of star cluster evolution are compared to the observations of Milone et al. (2012) for photometric binaries. It is demonstrated that the observed dependence on cluster mass of both the binary fraction and the ratio of the binary fractions inside and outside of the half mass radius are well recovered by the MOCCA simulations. This is due to a rapid decrease in the initial binary fraction due to the strong density-dependent destruction of wide binaries described by Marks, Kroupa & Oh (2011). We also discuss a new scenario for the formation of intermediate mass black holes in dense star clusters. In this scenario, intermediate mass black holes are formed as a result of dynamical interactions of hard binaries containing a stellar mass black hole, with other stars and binaries. We will discuss the necessary conditions to initiate the process of intermediate mass black hole formation and the dependence of its mass accretion rate on the global cluster properties.


2020 ◽  
Vol 500 (4) ◽  
pp. 4307-4318
Author(s):  
Giacomo Fragione ◽  
Rosalba Perna ◽  
Abraham Loeb

ABSTRACT As the sensitivity of gravitational wave (GW) instruments improves and new networks start operating, hundreds of merging stellar-mass black holes (SBHs) and intermediate-mass black holes (IMBHs) are expected to be observed in the next few years. The origin and distribution of SBH and IMBH binaries in various dynamical environments is a fundamental scientific question in GW astronomy. In this paper, we discuss ways tidal disruption events (TDEs) may provide a unique electromagnetic window into the assembly and merger of binary SBHs and IMBHs in nuclear star clusters (NSCs). We discuss how the host NSC mass and density and the slope of the BH mass function set the orbital properties and the masses of the binaries that undergo a TDE. For typical NSC properties, we predict a TDE rate of ∼10−6–10−7 yr−1 per galaxy. The light curve of TDEs in NSCs could be interrupted and modulated by the companion BH on the orbital period of the binary. These should be readily detectable by optical transient surveys such as the Zwicky Transient Facility and LSST.


2019 ◽  
Vol 488 (3) ◽  
pp. 4370-4377 ◽  
Author(s):  
Giacomo Fragione ◽  
Omer Bromberg

Abstract Globular clusters (GCs) may harbour intermediate-mass black holes (IMBHs) at their centres. In these dynamically active environments, stellar-mass black holes (SBHs) sink to the centre soon after formation, due to dynamical friction and start interacting among themselves and with the central IMBH. Likely, some of the SBHs will form bound systems with the IMBH. A fraction of those will be triple systems composed of binary SBHs and the IMBH acting as a third distant perturber. If the SBH binary orbit is sufficiently inclined, it can develop Lidov–Kozai (LK) oscillations, which can drive the system to high eccentricities and eventually to a merger due to gravitational wave (GW) emission on short time-scales. In this work, we focus on the dynamics of the IMBH–SBH–SBH triples and illustrate that these systems can be possible sources of GWs. A distinctive signature of this scenario is that a considerable fraction of these mergers are highly eccentric when entering the LIGO band (10 Hz). Assuming that $\sim 20{{\ \rm per\ cent}}$ of GCs host IMBHs and a GC density in the range $n_{{\rm GC}}=0.32\!-\!2.31\, \mathrm{Mpc}^{-3}$, we have estimated a rate $\Gamma =0.06\!-\!0.46\, \mathrm{Gpc}^{-3}\, \mathrm{yr}^{-1}$ of these events. This suggests that dynamically driven binary SBH mergers in this scenario could contribute to the merger events observed by LIGO/VIRGO. Full N-body simulations of GCs harbouring IMBHs are highly desirable to give a more precise constrain on this scenario.


2013 ◽  
Vol 9 (S303) ◽  
pp. 223-227
Author(s):  
A. Feldmeier ◽  
N. Neumayer ◽  
A. Seth ◽  
P. T. de Zeeuw ◽  
R. Schödel ◽  
...  

AbstractWithin the central 10 pc of our Galaxy lies a dense cluster of stars, the nuclear star cluster, forming a distinct component of our Galaxy. Nuclear star clusters are common objects and are detected in ∼75% of nearby galaxies. It is, however, not fully understood how nuclear clusters form. Because the Milky Way nuclear star cluster is at a distance of only 8 kpc, we can spatially resolve its stellar populations and kinematics much better than in external galaxies. This makes the Milky Way nuclear star cluster a reference object for understanding the structure and assembly history of all nuclear star clusters.We have obtained an unparalleled data set using the near-infrared long-slit spectrograph ISAAC (VLT) in a novel drift-scan technique to construct an integral-field spectroscopic map of the central ∼10 × 8 pc of our Galaxy. To complement our data set we also observed fields out to a distance of ∼19 pc along the Galactic plane to disentangle the influence of the nuclear stellar disk.From this data set we extract a stellar kinematic map using the CO bandheads and an emission line kinematic map using H2 emission lines. Using the stellar kinematics, we set up a kinematic model for the Milky Way nuclear star cluster to derive its mass and constrain the central Galactic potential. Because the black hole mass in the Milky Way is precisely known, this kinematic data set will also serve as a benchmark for testing black hole mass modeling techniques used in external galaxies.


2021 ◽  
Vol 923 (2) ◽  
pp. 246
Author(s):  
Alister W. Graham ◽  
Roberto Soria ◽  
Benjamin L. Davis ◽  
Mari Kolehmainen ◽  
Thomas Maccarone ◽  
...  

Abstract Building upon three late-type galaxies in the Virgo cluster with both a predicted black hole mass of less than ∼105 M ⊙ and a centrally located X-ray point source, we reveal 11 more such galaxies, more than tripling the number of active intermediate-mass black hole candidates among this population. Moreover, this amounts to a ∼36 ± 8% X-ray detection rate (despite the sometimes high, X-ray-absorbing, H i column densities), compared to just 10 ± 5% for (the largely H i-free) dwarf early-type galaxies in the Virgo cluster. The expected contribution of X-ray binaries from the galaxies’ inner field stars is negligible. Moreover, given that both the spiral and dwarf galaxies contain nuclear star clusters, the above inequality appears to disfavor X-ray binaries in nuclear star clusters. The higher occupation, or rather detection, fraction among the spiral galaxies may instead reflect an enhanced cool gas/fuel supply and Eddington ratio. Indeed, four of the 11 new X-ray detections are associated with known LINERs or LINER/H ii composites. For all (four) of the new detections for which the X-ray flux was strong enough to establish the spectral energy distribution in the Chandra band, it is consistent with power-law spectra. Furthermore, the X-ray emission from the source with the highest flux (NGC 4197: L X ≈ 1040 erg s−1) suggests a non-stellar-mass black hole if the X-ray spectrum corresponds to the “low/hard state”. Follow-up observations to further probe the black hole masses, and prospects for spatially resolving the gravitational spheres of influence around intermediate-mass black holes, are reviewed in some detail.


2021 ◽  
Vol 502 (2) ◽  
pp. 2049-2064
Author(s):  
Bin Liu ◽  
Dong Lai

ABSTRACT The merging black hole (BH) binaries GW190412, GW190814, and GW190521 from the third LIGO/VIRGO observing run exhibit some extraordinary properties, including highly asymmetric masses, significant spin, and component mass in the ‘mass gap’. These features can be explained if one or both components of the binary are the remnants of previous mergers. In this paper, we explore hierarchical mergers in multiple stellar systems, taking into account the natal kick and mass-loss due to the supernova explosion (SN) on each component, as well as the merger kick received by the merger remnant. The binaries that have survived the SNe and kicks generally have too wide orbital separations to merge by themselves, but can merge with the aid of an external companion that gives rise to Lidov–Kozai oscillations. The BH binaries that consist of second-generation BHs can also be assembled in dense star clusters through binary interactions. We characterize the parameter space of these BH binaries by merger fractions in an analytical approach. Combining the distributions of the survived binaries, we further constrain the parameters of the external companion, using the analytically formulated tertiary perturbation strength. We find that to produce the three LIGO/VIRGO O3 events, the external companions must be at least a few hundreds M⊙, and fall in the intermediate-mass BH and supermassive BH range. We suggest that GW190412, GW190814, and GW190521 could all be produced via hierarchical mergers in multiples, likely in a nuclear star cluster, with the final merger induced by a massive BH.


Sign in / Sign up

Export Citation Format

Share Document