scholarly journals Observing Intermediate-mass Black Holes and the Upper Stellar-mass gap with LIGO and Virgo

2022 ◽  
Vol 924 (1) ◽  
pp. 39
Author(s):  
Ajit Kumar Mehta ◽  
Alessandra Buonanno ◽  
Jonathan Gair ◽  
M. Coleman Miller ◽  
Ebraheem Farag ◽  
...  

Abstract Using ground-based gravitational-wave detectors, we probe the mass function of intermediate-mass black holes (IMBHs) wherein we also include BHs in the upper mass gap at ∼60–130 M ⊙. Employing the projected sensitivity of the upcoming LIGO and Virgo fourth observing run (O4), we perform Bayesian analysis on quasi-circular nonprecessing, spinning IMBH binaries (IMBHBs) with total masses 50–500 M ⊙, mass ratios 1.25, 4, and 10, and dimensionless spins up to 0.95, and estimate the precision with which the source-frame parameters can be measured. We find that, at 2σ, the mass of the heavier component of IMBHBs can be constrained with an uncertainty of ∼10%–40% at a signal-to-noise ratio of 20. Focusing on the stellar-mass gap with new tabulations of the 12C(α, γ)16O reaction rate and its uncertainties, we evolve massive helium core stars using MESA to establish the lower and upper edges of the mass gap as ≃ 59 − 13 + 34 M ⊙ and ≃ 139 − 14 + 30 M ⊙ respectively, where the error bars give the mass range that follows from the ±3σ uncertainty in the 12C(α, γ)16O nuclear reaction rate. We find that high resolution of the tabulated reaction rate and fine temporal resolution are necessary to resolve the peak of the BH mass spectrum. We then study IMBHBs with components lying in the mass gap and show that the O4 run will be able to robustly identify most such systems. Finally, we reanalyze GW190521 with a state-of-the-art aligned-spin waveform model, finding that the primary mass lies in the mass gap with 90% credibility.

2014 ◽  
Vol 444 (1) ◽  
pp. 29-42 ◽  
Author(s):  
Nathan W. C. Leigh ◽  
Nora Lützgendorf ◽  
Aaron M. Geller ◽  
Thomas J. Maccarone ◽  
Craig Heinke ◽  
...  

2021 ◽  
Vol 507 (4) ◽  
pp. 5132-5143
Author(s):  
Ugo N Di Carlo ◽  
Michela Mapelli ◽  
Mario Pasquato ◽  
Sara Rastello ◽  
Alessandro Ballone ◽  
...  

ABSTRACT Intermediate-mass black holes (IMBHs) in the mass range $10^2\!-\!10^5\, \mathrm{M_{\odot }}$ bridge the gap between stellar black holes (BHs) and supermassive BHs. Here, we investigate the possibility that IMBHs form in young star clusters via runaway collisions and BH mergers. We analyse 104 simulations of dense young star clusters, featuring up-to-date stellar wind models and prescriptions for core collapse and (pulsational) pair instability. In our simulations, only nine IMBHs out of 218 form via binary BH mergers, with a mass ∼100–140 M⊙. This channel is strongly suppressed by the low escape velocity of our star clusters. In contrast, IMBHs with masses up to ∼438 M⊙ efficiently form via runaway stellar collisions, especially at low metallicity. Up to ∼0.2 per cent of all the simulated BHs are IMBHs, depending on progenitor’s metallicity. The runaway formation channel is strongly suppressed in metal-rich (Z = 0.02) star clusters, because of stellar winds. IMBHs are extremely efficient in pairing with other BHs: ∼70 per cent of them are members of a binary BH at the end of the simulations. However, we do not find any IMBH–BH merger. More massive star clusters are more efficient in forming IMBHs: ∼8 per cent (∼1 per cent) of the simulated clusters with initial mass 104–3 × 104 M⊙ (103–5 × 103 M⊙) host at least one IMBH.


2016 ◽  
Vol 457 (4) ◽  
pp. 4499-4506 ◽  
Author(s):  
Carl-Johan Haster ◽  
Zhilu Wang ◽  
Christopher P. L. Berry ◽  
Simon Stevenson ◽  
John Veitch ◽  
...  

2020 ◽  
Vol 498 (3) ◽  
pp. 4287-4294
Author(s):  
Jongsuk Hong ◽  
Abbas Askar ◽  
Mirek Giersz ◽  
Arkadiusz Hypki ◽  
Suk-Jin Yoon

ABSTRACT The dynamical formation of black hole binaries in globular clusters that merge due to gravitational waves occurs more frequently in higher stellar density. Meanwhile, the probability to form intermediate mass black holes (IMBHs) also increases with the density. To explore the impact of the formation and growth of IMBHs on the population of stellar mass black hole binaries from globular clusters, we analyse the existing large survey of Monte Carlo globular cluster simulation data (mocca-survey Database I). We show that the number of binary black hole mergers agrees with the prediction based on clusters’ initial properties when the IMBH mass is not massive enough or the IMBH seed forms at a later time. However, binary black hole formation and subsequent merger events are significantly reduced compared to the prediction when the present-day IMBH mass is more massive than ${\sim}10^4\, \rm M_{\odot }$ or the present-day IMBH mass exceeds about 1 per cent of cluster’s initial total mass. By examining the maximum black hole mass in the system at the moment of black hole binary escaping, we find that ∼90 per cent of the merging binary black holes escape before the formation and growth of the IMBH. Furthermore, large fraction of stellar mass black holes are merged into the IMBH or escape as single black holes from globular clusters in cases of massive IMBHs, which can lead to the significant underpopulation of binary black holes merging with gravitational waves by a factor of 2 depending on the clusters’ initial distributions.


Author(s):  
Charles D. Bailyn

This chapter addresses the existence of intermediate-mass black holes. There is powerful empirical evidence for two classes of black holes, namely, the stellar-mass black holes, with masses a few times that of the Sun, and the supermassive black holes at the centers of galaxies. The considerable gap in mass between these two categories naturally prompts the question whether black holes might exist at other mass scales. In recent years, two lines of evidence have been presented in support of the idea that black holes with masses intermediate between stellar mass and supermassive might exist. Such sources are referred to as intermediate-mass black holes. In both cases the results are currently still ambiguous, and much debated.


2019 ◽  
Vol 487 (4) ◽  
pp. 5549-5563 ◽  
Author(s):  
Paramita Barai ◽  
Elisabete M de Gouveia Dal Pino

Abstract Intermediate-mass black holes (IMBHs; masses between $100\rm{\, and \,}10^{6} \, \mathrm{M}_{\odot }$) historically comprise of an elusive population compared to stellar-mass and supermassive black holes (BHs). Recently, IMBHs have started to be observed at the centres of low-mass galaxies. We perform cosmological hydrodynamical simulations of $(2 \, h^{-1} ~ {\rm Mpc})^3$ comoving boxes and investigate the growth and feedback of central IMBHs in dwarf galaxies (DGs). The earliest BHs appear at z ∼ 18–25 and grow thereafter by accreting gas and by merger with other BHs. We find that, starting from $10^{2} \, \mathrm{M}_{\odot }$, it is possible to build up IMBHs of a few$\times 10^{5}\!-\!10^{6} \, \mathrm{M}_{\odot }$ by z = 5, when the BHs are seeded in haloes less massive than $4 \times 10^{7} \, \mathrm{M}_{\odot }$. The BH accretion rates increase with time and reach $\dot{M}_{\rm BH} = (0.2\!-\!0.8) \dot{M}_{\rm Edd}$ for the massive IMBHs by z = 4. The star formation rate density (SFRD) evolution of the DGs (stellar mass $10^{5}\!-\!10^{8} \, \mathrm{M}_{\odot }$) has a peak plateau between z = 4 and 6. Star formation is quenched between z = 9 and 4. The SFRD is reduced by factors up to 3 when the BHs have grown to a few times $10^5 \, \mathrm{M}_{\odot }$. Even in the presence of stronger supernova (SN)-driven mass ejection, the BHs continue to grow up to z ∼ 6, sustained by gas inflows driven by galaxy mergers and interactions in a cosmological environment. Our conclusions, based on numerical simulation results, support the scenario that early feedback from IMBHs in gas-rich DGs at z = 5–8 can potentially solve several anomalies in the DG mass range within the concordance Λ cold dark matter (ΛCDM) cosmological scenario (Silk 2017). Our results suggest that IMBHs at DG centres grow faster than their host galaxies in the early Universe, and the resulting BH feedback turns the DGs and the BHs dormant.


2005 ◽  
Vol 22 (3) ◽  
pp. 195-198 ◽  
Author(s):  
Zdenka Kuncic

AbstractThis review summarizes the astrophysical evidence for the existence of black holes provided by their gravitational influence on nearby matter. Two classes of accreting black holes have now been observationally verified: supermassive black holes (SMBHs) in galactic nuclei, and stellar-mass black holes in X-ray binaries (XRBs). With the recent re-discovery of ultra-luminous X-ray (ULX) sources, fresh evidence has also emerged for the existence of a third class of accreting black holes: intermediate-mass black holes (IMBHs). The properties of the three classes of accreting black holes are briefly discussed.


2006 ◽  
Vol 2 (S238) ◽  
pp. 309-314 ◽  
Author(s):  
I. Félix Mirabel

AbstractWhile until recently they were often considered as exotic objects of dubious existence, in the last decades there have been overwhelming observational evidences for the presence of stellar mass black holes in binary systems, supermassive black holes at the centers of galaxies, and possibly, intermediate-mass black holes observed as ultraluminous X-ray sources in nearby galaxies. Black holes are now widely accepted as real physical entities that play an important role in several areas of modern astrophysics.Here I review the concluding remarks of the IAU Symposium No 238 on Black Holes, with particular emphasis on the topical questions in this area of research.


2020 ◽  
Author(s):  
Kushaal Kumar Pothula

Abstract Intermediate Mass Black Holes (IMBHs) are an elusive category of black holes in the mass range of 100 to 100000 Solar Masses. Binary IMBHs might form due to mergers of Globular Clusters, Pair Instability Supernovae, and in Young Massive Star Clusters. In this Research Note, merger timescale, constraints on the separation based on the timescale, and other parameters of Binary IMBHs are calculated analytically and are discussed. The calculations were conducted using Newtonian and Einstienian dynamics. The timescale of a Binary IMBH system to reach maximum gravitational wave amplitude is also calculated ad discussed. We also present the relation between the combined Mass of a Binary Black Hole (BBH) System and the Separation between two BHs required for a BBH system to merge within a given timescale tc, solely due to Gravitational Radiation is a function of the total mass of the system. In this article, tc is set equal to Hubble time tH. Now, the relation obtained is essentially the relation between separation of a BBH system (collide within tH) and its Mass. The calculations were conducted for all three categories of Black Holes: Stellar, Intermediate, and Supermassive. Time ahead, the relation might be used for determining whether a BBH merger would be observational. The relation is also solved for Intermediate Mass Black Holes (IMBHs), and and tc separation for collision within tH was calculated.


Sign in / Sign up

Export Citation Format

Share Document