scholarly journals INTEGRAL UPPER LIMITS ON GAMMA-RAY EMISSION ASSOCIATED WITH THE GRAVITATIONAL WAVE EVENT GW150914

2016 ◽  
Vol 820 (2) ◽  
pp. L36 ◽  
Author(s):  
V. Savchenko ◽  
C. Ferrigno ◽  
S. Mereghetti ◽  
L. Natalucci ◽  
A. Bazzano ◽  
...  
2018 ◽  
Vol 612 ◽  
pp. A12 ◽  
Author(s):  
◽  
H. Abdalla ◽  
A. Abramowski ◽  
F. Aharonian ◽  
F. Ait Benkhali ◽  
...  

Context. Runaway stars form bow shocks by ploughing through the interstellar medium at supersonic speeds and are promising sources of non-thermal emission of photons. One of these objects has been found to emit non-thermal radiation in the radio band. This triggered the development of theoretical models predicting non-thermal photons from radio up to very-high-energy (VHE, E ≥ 0.1 TeV) gamma rays. Subsequently, one bow shock was also detected in X-ray observations. However, the data did not allow discrimination between a hot thermal and a non-thermal origin. Further observations of different candidates at X-ray energies showed no evidence for emission at the position of the bow shocks either. A systematic search in the Fermi-LAT energy regime resulted in flux upper limits for 27 candidates listed in the E-BOSS catalogue.Aim. Here we perform the first systematic search for VHE gamma-ray emission from bow shocks of runaway stars.Methods. Using all available archival H.E.S.S. data we search for very-high-energy gamma-ray emission at the positions of bow shock candidates listed in the second E-BOSS catalogue release. Out of the 73 bow shock candidates in this catalogue, 32 have been observed with H.E.S.S.Results. None of the observed 32 bow shock candidates in this population study show significant emission in the H.E.S.S. energy range. Therefore, flux upper limits are calculated in five energy bins and the fraction of the kinetic wind power that is converted into VHE gamma rays is constrained.Conclusions. Emission from stellar bow shocks is not detected in the energy range between 0.14 and 18 TeV.The resulting upper limits constrain the level of VHE gamma-ray emission from these objects down to 0.1–1% of the kinetic wind energy.


1991 ◽  
Vol 369 ◽  
pp. 485 ◽  
Author(s):  
M. P. Ulmer ◽  
W. R. Purcell ◽  
W. A. Wheaton ◽  
W. A. Mahoney

1995 ◽  
Vol 452 ◽  
pp. 588 ◽  
Author(s):  
A. D. Kerrick ◽  
C. W. Akerlof ◽  
S. Biller ◽  
J. Buckley ◽  
D. A. Carter-Lewis ◽  
...  

1993 ◽  
Vol 405 ◽  
pp. L59 ◽  
Author(s):  
D. Barret ◽  
P. Mandrou ◽  
M. Denis ◽  
J. F. Olive ◽  
P. Laurent ◽  
...  

2014 ◽  
Vol 789 (1) ◽  
pp. 65 ◽  
Author(s):  
Daisuke Yonetoku ◽  
Takashi Nakamura ◽  
Tatsuya Sawano ◽  
Keitaro Takahashi ◽  
Asuka Toyanago

2016 ◽  
Vol 93 (12) ◽  
Author(s):  
Reetanjali Moharana ◽  
Soebur Razzaque ◽  
Nayantara Gupta ◽  
Peter Mészáros

2017 ◽  
Vol 848 (2) ◽  
pp. L15 ◽  
Author(s):  
V. Savchenko ◽  
C. Ferrigno ◽  
E. Kuulkers ◽  
A. Bazzano ◽  
E. Bozzo ◽  
...  

2009 ◽  
Vol 508 (3) ◽  
pp. 1135-1140 ◽  
Author(s):  
◽  
F. Acero ◽  
F. Aharonian ◽  
A. G. Akhperjanian ◽  
G. Anton ◽  
...  

2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Adrian Ka-Wai Chung ◽  
Mairi Sakellariadou

AbstractWe present a method to constrain the temperature of astrophysical black holes through detecting the inspiral phase of binary black hole coalescences. At sufficient separation, inspiraling black holes can be regarded as isolated objects, hence their temperature can still be defined. Due to their intrinsic radiation, inspiraling black holes lose part of their masses during the inspiral phase. As a result, coalescence speeds up, introducing a correction to the orbital phase. We show that this dephasing may allow us to constrain the temperature of inspiraling black holes through gravitational-wave detection. Using the binary black-hole coalescences of the first two observing runs of the Advanced LIGO and Virgo detectors, we constrain the temperature of parental black holes to be less than about $$ 10^9 $$ 10 9  K. Such a constraint corresponds to luminosity of about $$ 10^{-16} M_{\odot }~\mathrm{s}^{-1} $$ 10 - 16 M ⊙ s - 1 for a black hole of $$ 20 M_{\odot } $$ 20 M ⊙ , which is about 20 orders of magnitude below the peak luminosity of the corresponding gravitational-wave event, indicating no evidence for strong quantum-gravity effects through the detection of the inspiral phase.


Sign in / Sign up

Export Citation Format

Share Document