scholarly journals SHORT GAMMA-RAY BURST FORMATION RATE FROM BATSE DATA USINGEp-LpCORRELATION AND THE MINIMUM GRAVITATIONAL-WAVE EVENT RATE OF A COALESCING COMPACT BINARY

2014 ◽  
Vol 789 (1) ◽  
pp. 65 ◽  
Author(s):  
Daisuke Yonetoku ◽  
Takashi Nakamura ◽  
Tatsuya Sawano ◽  
Keitaro Takahashi ◽  
Asuka Toyanago
2016 ◽  
Vol 93 (12) ◽  
Author(s):  
Reetanjali Moharana ◽  
Soebur Razzaque ◽  
Nayantara Gupta ◽  
Peter Mészáros

2012 ◽  
Vol 8 (S292) ◽  
pp. 190-190
Author(s):  
J. M. Chen ◽  
L. W. Jia ◽  
E. W. Liang

AbstractGRBs are the most luminous events in the Universe. They are detectable from local to high-z universe and may serve as probes for high-z galaxies (e.g., Savaglio et al. 2009; Kewley & Dopita 2002). We compile the observations for 61 GRB host galaxies from literature. Their redshifts range from 0.0085 to 6.295. We present the statistical properties of the GRB host galaxies, including the stellar mass (M*), star-forming rate (SFR), metallicity (Z), extinction (AV), and neutral hydrogen column density (NH). We explore possible correlations among the properties of gamma-ray burst host galaxies and their cosmic evolution with observations of 61 GRB host galaxies. Our results are shown in Figure 1. A clear Z-M* relation is found in our sample, which is Z ~ M0.4. The host galaxies of local GRBs with detection of accompanied supernovae also share the same relation with high-z GRB host galaxies. A trend that a more massive host galaxy tends to have a higher star-formation rate is found. The best linear fit gives a tentative relation, i.e, SFR ~ M0.75. No any correlation is found between AV and NH. A GRB host galaxy at a higher redshift also tends to have a higher SFR. Even in the same redshift, the SFR may vary over three orders of magnitude. The metallicity of the GRB host galaxies is statistically higher than that of the QSO DLAs. The full version of our results please refer to Chen et al. (2012).


2020 ◽  
Vol 245 ◽  
pp. 07050
Author(s):  
Stefano Bagnasco

Advanced Virgo is an interferometer for the detection of gravitational waves at the European Gravitational Observatory in Italy. Along with the two Advanced LIGO interferometers in the US, Advanced Virgo is being used to collect data from astrophysical sources such as compact binary coalescences and is currently running the third observational period, collecting gravitational wave event candidates at a rate of more than once per week. Data from the interferometer are processed by running search pipelines for several expected signals, from coalescing compact binaries to continuous waves and burst events. Furthermore, detector characterisation studies are run. Some of the processing needs to be done with low latency, to be able to provide triggers for other observatories and make multi-messenger observations possible. Deep searches are run offline on external computing centres. Thus, data needs also to be reliably and promptly distributed from the EGO site to computer centres in Europe and the US for further analysis and archival storage. Two of the defining characteristics of Virgo computing are the heterogeneity of the activities and the need to interoperate with LIGO. A very wide array of analysis pipelines differing in scientific target, implementation details and running environment assumptions have to be allowed to run ubiquitously and uniformly on dedicated resources and, in perspective, on heterogeneous infrastructures. The current status, possible strategies and outlook of Virgo computing are discussed.


2020 ◽  
Vol 493 (1) ◽  
pp. L6-L10 ◽  
Author(s):  
Petra N Tang ◽  
J J Eldridge ◽  
Elizabeth R Stanway ◽  
J C Bray

ABSTRACT We compare the impacts of uncertainties in both binary population synthesis models and the cosmic star formation history on the predicted rates of gravitational wave (GW) compact binary merger events. These uncertainties cause the predicted rates of GW events to vary by up to an order of magnitude. Varying the volume-averaged star formation rate density history of the Universe causes the weakest change to our predictions, while varying the metallicity evolution has the strongest effect. Double neutron star merger rates are more sensitive to assumed neutron star kick velocity than the cosmic star formation history. Varying certain parameters affects merger rates in different ways depending on the mass of the merging compact objects; thus some of the degeneracy may be broken by looking at all the event rates rather than restricting ourselves to one class of mergers.


2020 ◽  
Vol 493 (3) ◽  
pp. 3379-3397 ◽  
Author(s):  
A Rossi ◽  
G Stratta ◽  
E Maiorano ◽  
D Spighi ◽  
N Masetti ◽  
...  

ABSTRACT Multimessenger astronomy received a great boost following the discovery of kilonova (KN) AT2017gfo, the optical counterpart of the gravitational wave source GW170817 associated with the short gamma-ray burst GRB 170817A. AT2017gfo was the first KN that could be extensively monitored in time using both photometry and spectroscopy. Previously, only few candidates have been observed against the glare of short GRB afterglows. In this work, we aim to search the fingerprints of AT2017gfo-like KN emissions in the optical/NIR light curves of 39 short GRBs with known redshift. For the first time, our results allow us to study separately the range of luminosity of the blue and red components of AT2017gfo-like kilonovae in short GRBs. In particular, the red component is similar in luminosity to AT2017gfo, while the blue KN can be more than 10 times brighter. Finally, we exclude a KN as luminous as AT2017gfo in GRBs 050509B and 061201.


2016 ◽  
Vol 12 (S324) ◽  
pp. 66-69
Author(s):  
Gavin P. Lamb ◽  
Shiho Kobayashi

AbstractCompact binary mergers, with neutron stars or neutron star and black-hole components, are thought to produce various electromagnetic counterparts: short gamma-ray bursts (GRBs) from ultra-relativistic jets followed by broadband afterglow; semi-isotropic kilonova from radioactive decay of r-process elements; and late time radio flares; etc. If the jets from such mergers follow a similar power-law distribution of Lorentz factors as other astrophysical jets then the population of merger jets will be dominated by low-Γ values. The prompt gamma-rays associated with short GRBs would be suppressed for a low-Γ jet and the jet energy will be released as X-ray/optical/radio transients when a shock forms in the ambient medium. Using Monte Carlo simulations, we study the properties of such transients as candidate electromagnetic counterparts to gravitational wave sources detectable by LIGO/Virgo. Approximately 78% of merger-jets result in failed GRB with optical peaks 14-22 magnitude and an all-sky rate of 2-3 per year.


2004 ◽  
Vol 70 (10) ◽  
Author(s):  
Norichika Sago ◽  
Kunihito Ioka ◽  
Takashi Nakamura ◽  
Ryo Yamazaki

2019 ◽  
Vol 488 (4) ◽  
pp. 5823-5832 ◽  
Author(s):  
Nicole M Lloyd-Ronning ◽  
Aycin Aykutalp ◽  
Jarrett L Johnson

ABSTRACT We examine the relationship between a number of long gamma-ray burst (lGRB) properties (isotropic emitted energy, luminosity, intrinsic duration, jet opening angle) and redshift. We find that even when accounting for conservative detector flux limits, there appears to be a significant correlation between isotropic equivalent energy and redshift, suggesting cosmological evolution of the lGRB progenitor. Analysing a sub-sample of lGRBs with jet opening angle estimates, we find the beaming-corrected lGRB emitted energy does not correlate with redshift, but jet opening angle does. Additionally, we find a statistically significant anticorrelation between the intrinsic prompt duration and redshift, even when accounting for potential selection effects. We also find that, for a given redshift, isotropic energy is positively correlated with intrinsic prompt duration. None of these GRB properties appear to be correlated with galactic offset. From our selection-effect-corrected redshift distribution, we estimate a co-moving rate density for lGRBs, and compare this to the global cosmic star formation rate (SFR). We find the lGRB rate mildly exceeds the global star formation rate between a redshift of 3 and 5, and declines rapidly at redshifts above this (although we cannot constrain the lGRB rate above a redshift of about 6 due to sample incompleteness). We find the lGRB rate diverges significantly from the SFR at lower redshifts. We discuss both the correlations and lGRB rate density in terms of various lGRB progenitor models and their apparent preference for low-metallicity environments.


Sign in / Sign up

Export Citation Format

Share Document