scholarly journals A Magnified View of Circumnuclear Star Formation and Feedback around an Active Galactic Nucleus at z = 2.6

2018 ◽  
Vol 866 (1) ◽  
pp. L12 ◽  
Author(s):  
J. E. Geach ◽  
R. J. Ivison ◽  
S. Dye ◽  
I. Oteo
2020 ◽  
Vol 15 (S359) ◽  
pp. 192-194
Author(s):  
Elismar Lösch ◽  
Daniel Ruschel-Dutra

AbstractGalaxy mergers are known to drive an inflow of gas towards galactic centers, potentia- lly leading to both star formation and nuclear activity. In this work we aim to study how a major merger event in the ARP 245 system is linked with the triggering of an active galactic nucleus (AGN) in the NGC galaxy 2992. We employed three galaxy collision numerical simulations and calculated the inflow of gas through four different concentric spherical surfaces around the galactic centers, estimating an upper limit for the luminosity of an AGN being fed the amount of gas crossing the innermost spherical surface. We found that these simulations predict reasonable gas inflow rates when compared with the observed AGN luminosity in NGC 2992.


2019 ◽  
Vol 487 (1) ◽  
pp. 1210-1217 ◽  
Author(s):  
Ariane Trudeau ◽  
Tracy Webb ◽  
Julie Hlavacek-Larrondo ◽  
Allison Noble ◽  
Marie-Lou Gendron-Marsolais ◽  
...  

ABSTRACT We present deep, multiwavelength radio observations of SpARCS104922.6 + 564032.5, a z = 1.71 galaxy cluster with a starbursting core. Observations were made with the Karl G. Jansky Very Large Array (JVLA) in three bands: 1–2 GHz, 4–8 GHz, and 8–12 GHz. We detect a radio source coincident with the brightest cluster galaxy (BCG) that has a spectral index of α = 0.44 ± 0.29 and is indicative of emission from an active galactic nucleus. The radio luminosity is consistent with the average luminosity of the lower redshift BCG sample, but the flux densities are 6σ below the predicted values of the star-forming spectral energy distribution based on far infrared data. Our new fit fails to simultaneously describe the far infrared and radio fluxes. This, coupled with the fact that no other bright source is detected in the vicinity of the BCG implies that the star formation region, traced by the infrared emission, is extended or clumpy and not located directly within the BCG. Thus, we suggest that the star-forming core might not be driven by a single major wet merger, but rather by several smaller galaxies stripped of their gas or by a displaced cooling flow, although more data are needed to confirm any of those scenarios.


2019 ◽  
Vol 488 (1) ◽  
pp. 135-152 ◽  
Author(s):  
Maan H Hani ◽  
Sara L Ellison ◽  
Martin Sparre ◽  
Robert J J Grand ◽  
Rüediger Pakmor ◽  
...  

ABSTRACT Galaxies are surrounded by massive gas reservoirs (i.e. the circumgalactic medium; CGM) which play a key role in their evolution. The properties of the CGM, which are dependent on a variety of internal and environmental factors, are often inferred from absorption line surveys which rely on a limited number of single lines-of-sight. In this work we present an analysis of 28 galaxy haloes selected from the Auriga project, a cosmological magneto-hydrodynamical zoom-in simulation suite of isolated Milky Way-mass galaxies, to understand the impact of CGM diversity on observational studies. Although the Auriga haloes are selected to populate a narrow range in halo mass, our work demonstrates that the CGM of L⋆ galaxies is extremely diverse: column densities of commonly observed species span ∼3 − 4 dex and their covering fractions range from ${\sim } 5$ to $90{{\ \rm per\ cent}}$. Despite this diversity, we identify the following correlations: 1) the covering fractions (CF) of hydrogen and metals of the Auriga haloes positively correlate with stellar mass, 2) the CF of H i, C iv, and Si ii anticorrelate with active galactic nucleus luminosity due to ionization effects, and 3) the CF of H i, C iv, and Si ii positively correlate with galaxy disc fraction due to outflows populating the CGM with cool and dense gas. The Auriga sample demonstrates striking diversity within the CGM of L⋆ galaxies, which poses a challenge for observations reconstructing CGM characteristics from limited samples, and also indicates that long-term merger assembly history and recent star formation are not the dominant sculptors of the CGM.


2010 ◽  
Vol 724 (1) ◽  
pp. 779-790 ◽  
Author(s):  
I. Morić ◽  
V. Smolčić ◽  
A. Kimball ◽  
D. A. Riechers ◽  
Ž. Ivezić ◽  
...  

2011 ◽  
Vol 143 (1) ◽  
pp. 16 ◽  
Author(s):  
F. Modica ◽  
T. Vavilkin ◽  
A. S. Evans ◽  
D.-C. Kim ◽  
J. M. Mazzarella ◽  
...  

2021 ◽  
Vol 57 (1) ◽  
pp. 157-166
Author(s):  
Xin-Fa Deng ◽  
Xiao-Qing Wen

Using the apparent-magnitude limited active galactic nucleus (AGN) host galaxy sample of the Sloan Digital Sky Survey Data Release 12 (SDSS DR12), we investigate the environmental dependence of age, stellar mass, the star formation rate (SFR) and stellar velocity dispersion of AGN host galaxies. We divide the whole apparent-magnitude limited AGN sample into many subsamples with a redshift binning size of Δz = 0.01, and analyse the environmental dependence of these galaxy properties of subsamples in each redshift bin. It turns out that these parameters of AGN host galaxies seemingly only have a weak environmental dependence.


Sign in / Sign up

Export Citation Format

Share Document