scholarly journals Probabilistic Detection of Spectral Line Components

2020 ◽  
Vol 892 (2) ◽  
pp. L32
Author(s):  
Vlas Sokolov ◽  
Jaime E. Pineda ◽  
Johannes Buchner ◽  
Paola Caselli
1976 ◽  
Vol 32 ◽  
pp. 343-349
Author(s):  
Yu.V. Glagolevsky ◽  
K.I. Kozlova ◽  
V.S. Lebedev ◽  
N.S. Polosukhina

SummaryThe magnetic variable star 21 Per has been studied from 4 and 8 Å/mm spectra obtained with the 2.6 - meter reflector of the Crimean Astrophysical Observatory. Spectral line intensities (Wλ) and radial velocities (Vr) have been measured.


2018 ◽  
Vol 84 (12) ◽  
pp. 5-19
Author(s):  
D. N. Bock ◽  
V. A. Labusov

A review of publications regarding detection of non-metallic inclusions in metal alloys using optical emission spectrometry with single-spark spectrum registration is presented. The main advantage of the method - an extremely short time of measurement (~1 min) – makes it useful for the purposes of direct production control. A spark-induced impact on a non-metallic inclusion results in a sharp increase (flashes) in the intensities of spectral lines of the elements that comprise the inclusion because their content in the metal matrix is usually rather small. The intensity distribution of the spectral line of the element obtained from several thousand of single-spark spectra consists of two parts: i) the Gaussian function corresponding to the content of the element in a dissolved form, and ii) an asymmetric additive in the region of high intensity values ??attributed to inclusions. Their quantitative determination is based on the assumption that the intensity of the spectral line in the single-spark spectrum is proportional to the content of the element in the matter ablated by the spark. Thus, according to the calibration dependence constructed using samples with a certified total element content, it is possible not only to determine the proportions of the dissolved and undissolved element, but also the dimensions of the individual inclusions. However, determination of the sizes is limited to a range of 1 – 20 µm. Moreover, only Al-containing inclusions can be determined quantitatively nowadays. Difficulties occur both with elements hardly dissolved in steels (O, Ca, Mg, S), and with the elements which exhibit rather high content in the dissolved form (Si, Mn). It is also still impossible to determine carbides and nitrides in steels using C and N lines. The use of time-resolved spectrometry can reduce the detection limits for inclusions containing Si and, possibly, Mn. The use of the internal standard in determination of the inclusions can also lower the detection limits, but may distort the results. Substitution of photomultipliers by solid-state linear radiation detectors provided development of more reliable internal standard, based on the background value in the vicinity of the spectral line. Verification of the results is difficult in the lack of standard samples of composition of the inclusions. Future studies can expand the range of inclusions to be determined by this method.


1997 ◽  
Vol 478 (1) ◽  
pp. 374-380 ◽  
Author(s):  
Artie P. Hatzes ◽  
William D. Cochran ◽  
Christopher M. Johns‐Krull
Keyword(s):  

Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 176
Author(s):  
Valery Astapenko ◽  
Andrei Letunov ◽  
Valery Lisitsa

The effect of plasma Coulomb microfied dynamics on spectral line shapes is under consideration. The analytical solution of the problem is unachievable with famous Chandrasekhar–Von-Neumann results up to the present time. The alternative methods are connected with modeling of a real ion Coulomb field dynamics by approximate models. One of the most accurate theories of ions dynamics effect on line shapes in plasmas is the Frequency Fluctuation Model (FFM) tested by the comparison with plasma microfield numerical simulations. The goal of the present paper is to make a detailed comparison of the FFM results with analytical ones for the linear and quadratic Stark effects in different limiting cases. The main problem is connected with perturbation additions laws known to be vector for small particle velocities (static line shapes) and scalar for large velocities (the impact limit). The general solutions for line shapes known in the frame of scalar perturbation additions are used to test the FFM procedure. The difference between “scalar” and “vector” models is demonstrated both for linear and quadratic Stark effects. It is shown that correct transition from static to impact limits for linear Stark-effect needs in account of the dependence of electric field jumping frequency in FFM on the field strengths. However, the constant jumping frequency is quite satisfactory for description of the quadratic Stark-effect. The detailed numerical comparison for spectral line shapes in the frame of both scalar and vector perturbation additions with and without jumping frequency field dependence for the linear and quadratic Stark effects is presented.


2021 ◽  
Vol 92 (5) ◽  
pp. 053505
Author(s):  
F. Kin ◽  
T. Nakano ◽  
N. Oyama ◽  
A. Terakado ◽  
T. Wakatsuki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document