Energy Efficient Thermal Storage System Using Nanomaterials Embedded Phase Change Materials for Modern Buildings

Author(s):  
S. Kalaiselvam
2017 ◽  
Vol 21 (6 Part A) ◽  
pp. 2525-2532 ◽  
Author(s):  
Shailendra Kumar ◽  
Kishan Kumar

The present study explores suitability of two phase change materials (PCM) for development of an active thermal storage system for a solar drying kiln by studying their melting and solidification behaviors. A double glass glazing prototype solar kiln was used in the study. The storage system consisted of a water storage tank with PCM placed inside the water in high density polyethylene containers. The water in the tank was heated with help of solar energy using an evacuated tube collector array. The melting and solidification temperature curves of PCM were obtained by charging and discharging the water tank. The study illustrated the utility of the PCM in using the stored thermal energy during their discharge to enhance the temperature inside the kiln. The rate of temperature reduction was found to be higher for paraffin wax as compared to a fatty acid based PCM. The water temperature during the discharge of the PCM showed dependence on the discharge characteristics of each PCM suggesting their suitability in designing active thermal storage systems.


2021 ◽  
Vol 16 (1) ◽  
pp. 032-041
Author(s):  
Pradeep N ◽  
Somesh Subramanian S

Thermal energy storage through phase change material has been used for wide applications in the field of air conditioning and refrigeration. The specific use of this thermal storage has been for energy storage during low demand and release of this energy during peak loads with potential to provide energy savings due to this. The principle of latent heat storage using phase change materials (PCMs) can be incorporated into a thermal storage system suitable for using deep freezers. The evaporator is covered with another box which has storage capacity or passage through phase change material. The results revealed that the performance is increased from 3.2 to 3.5 by using PCM.


1991 ◽  
Vol 113 (4) ◽  
pp. 244-249 ◽  
Author(s):  
Chang H. Son ◽  
Jeffrey H. Morehouse

The goal of this study is to determine and produce the thermal properties of solid-state phase-change materials appropriate for solar system space heating storage (transition temperatures in the 40 to 60°C range). A major effort is directed toward improving the overall heat storage characteristics of solid-state phase-change materials by increasing the materials’ thermal conductivities. The solid-state phase change materials focused on in this study are neopentyl glycol and pentaglycerine. The results from testing various materials are reported as thermophysical property values. The results from a constant heat flux, thermal storage charging experiment are reported for both the solid-state materials and the enhanced conductivity materials. The storage system modeled is a tube bank with hot fluid inside the tubes transferring heat to the solid-solid phase-change material outside the tubes.


2016 ◽  
Vol 107 ◽  
pp. 264-270 ◽  
Author(s):  
D. Cano ◽  
C. Funéz ◽  
L. Rodriguez ◽  
J.L. Valverde ◽  
L. Sanchez-Silva

2021 ◽  
Vol 11 (4) ◽  
pp. 1390
Author(s):  
Rocío Bayón

Thermal energy storage using phase change materials (PCMs) is a research topic that has attracted much attention in recent decades [...]


2021 ◽  
pp. 131208
Author(s):  
Qinglin Li ◽  
Xiaodong Ma ◽  
Xiaoyu Zhang ◽  
Jiqiang Ma ◽  
Xiaowu Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document