Nonlinear Thermal Bending for Shear Deformable Nanobeams Based on Nonlocal Elasticity Theory

Author(s):  
Q. Yang ◽  
C. W. Lim ◽  
Y. Xiang
2017 ◽  
Vol 17 (01) ◽  
pp. 1750014 ◽  
Author(s):  
R. Ansari ◽  
R. Gholami

This paper presents a nonlocal nonlinear first-order shear deformable plate model for investigating the buckling and postbuckling of magneto-electro-thermo elastic (METE) nanoplates under magneto-electro-thermo-mechanical loadings. The nonlocal elasticity theory within the framework of the first-order shear deformation plate theory along with the von Kármán-type geometrical nonlinearity is used to derive the size-dependent nonlinear governing partial differential equations and associated boundary conditions, in which the effects of shear deformation, small scale parameter and thermo-electro-magneto-mechanical loadings are incorporated. The generalized differential quadrature (GDQ) method and pseudo arc-length continuation algorithm are used to determine the critical buckling loads and postbuckling equilibrium paths of the METE nanoplates with various boundary conditions. Finally, the influences of the nonlocal parameter, boundary conditions, temperature rise, external electric voltage and external magnetic potential on the critical buckling load and postbuckling response are studied.


Author(s):  
Jan Awrejcewicz ◽  
Grzegorz Kudra ◽  
Olga Mazur

AbstractIn this paper vibrations of the isotropic micro/nanoplates subjected to transverse and in-plane excitation are investigated. The governing equations of the problem are based on the von Kármán plate theory and Kirchhoff–Love hypothesis. The small-size effect is taken into account due to the nonlocal elasticity theory. The formulation of the problem is mixed and employs the Airy stress function. The two-mode approximation of the deflection and application of the Bubnov–Galerkin method reduces the governing system of equations to the system of ordinary differential equations. Varying the load parameters and the nonlocal parameter, the bifurcation analysis is performed. The bifurcations diagrams, the maximum Lyapunov exponents, phase portraits as well as Poincare maps are constructed based on the numerical simulations. It is shown that for some excitation conditions the chaotic motion may occur in the system. Also, the small-scale effects on the character of vibrating regimes are illustrated and discussed.


Sign in / Sign up

Export Citation Format

Share Document