On The Axial Crushing Behavior of a Thin-Walled Cylindrical Shell With a Hollow Foam Core

Author(s):  
Lei Ye ◽  
Guoxing Lu ◽  
Guowei Ma
2016 ◽  
Vol 108-109 ◽  
pp. 49-60 ◽  
Author(s):  
Yanpeng Wei ◽  
Zhe Yang ◽  
He Yan ◽  
Yacong Guo ◽  
Xianqian Wu ◽  
...  

2016 ◽  
Vol 10 (2) ◽  
pp. 90 ◽  
Author(s):  
Prescilla Christy Albert ◽  
Amir Radzi Ab Ghani ◽  
Mohd Zaid Othman ◽  
Ahmad Mujahid Ahmad Zaidi

<span style="font-size: 10pt; font-family: 'Times New Roman','serif'; mso-fareast-font-family: 宋体; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;" lang="EN-US">The study of axial crushing behavior is important in designing crashworthy structures especially in automotive applications. The axial crushing of thin-walled tube has better energy absorption capability. Thus, introducing milled geometrical shapes on thin-walled tube may improve the energy absorption performance. The improvement of the crush response is determined through the reduction of the Initial Peak Force (IPF) and the increase of the Specific Energy Absorption (SEA). This was done by employing origami pattern milled on the surface of thin-walled square tube which was investigated experimentally and numerically. The material used for the tube was aluminum alloy 6063-T5. The simulation results were validated by experiments which were conducted using <span style="text-transform: uppercase;">Instron</span> 3382 Universal Testing Machine and <span style="text-transform: uppercase;">Instron Dynatup</span> 8250 Drop Hammer Machine. The numerical simulation then progressed by varying parameters such as dimensions and configurations of the origami pattern on the square tube. ABAQUS finite element (FE) software was used to conduct the numerical simulation. The result of employing the origami square pattern on square tube is expected to improve the crush response by lowering the IPF and increasing the SEA. The obtained results were then compared with the conventional square tube where the origami pattern on square tube enhanced the crush performance.</span>


2019 ◽  
Vol 19 (12) ◽  
pp. 1950160 ◽  
Author(s):  
Jing Zhang ◽  
Jie Xu ◽  
Xuegang Yuan ◽  
Wenzheng Zhang ◽  
Datian Niu

Some significant behaviors on strongly nonlinear vibrations are examined for a thin-walled cylindrical shell composed of the classical incompressible Mooney–Rivlin material and subjected to a single radial harmonic excitation at the inner surface. First, with the aid of Donnell’s nonlinear shallow-shell theory, Lagrange’s equations and the assumption of small strains, a nonlinear system of differential equations for the large deflection vibration of a thin-walled shell is obtained. Second, based on the condensation method, the nonlinear system of differential equations is reduced to a strongly nonlinear Duffing equation with a large parameter. Finally, by the appropriate parameter transformation and modified Lindstedt–Poincar[Formula: see text] method, the response curves for the amplitude-frequency and phase-frequency relations are presented. Numerical results demonstrate that the geometrically nonlinear characteristic of the shell undergoing large vibrations shows a hardening behavior, while the nonlinearity of the hyperelastic material should weak the hardening behavior to some extent.


Sign in / Sign up

Export Citation Format

Share Document