An analytical model for axial crushing of a thin-walled cylindrical shell with a hollow foam core

2011 ◽  
Vol 49 (11) ◽  
pp. 1460-1467 ◽  
Author(s):  
L. Ye ◽  
G. Lu ◽  
J.L. Yang
Author(s):  
Sthanu Mahadev ◽  
Wen S. Chan

This research discourse presents the development of a holistic mathematical model that is dedicated to showcase a set of analytical expressions for predicting global stiffness (axial stiffness, bending stiffness) and a material response characterization based on ply-per-ply in-plane stress investigations relevant to open-celled multidirectional curved cylindrical shell configurations. Additionally, the analytical model is shown to present the capability to mathematically determine the location of the centroid for thin-walled, composite cylindrical shells. The resulting centroidal expression for a composite system is essentially shown to be a primary function of material properties, composite stacking sequence, fiber orientation angle and the structural geometry as opposed to metal counterparts whose centroidal point is solely governed by their geometry. Analytical stress estimates are computed for thin-walled curved cylindrical shell constructions that are subjected to typical tension and longitudinal bending type loading conditions applied at the centroid under the presence and absence of a uniformly distributed thermal loading environment. A broad parametric investigation on the in-plane ply stresses (σx,σy,τxy) are conducted via choosing three fundamental parameters namely; varying mean radius of curvature, changing laminate thickness-to-mean radius ratio and increasing laminate thickness respectively. Three preferentially tailored variabilities in ply stacking sequence are established from a [(±45° / 0°]s symmetric-balanced composite lay-up to illustrate the effects on ply stresses. An ANSYS based finite element analysis scheme is employed to numerically determine the location of centroid and further substantiate the analytically acquired centroid predictions including and excluding the effects of temperature. The centroidal point is identified and its location is progressively reported for a fully open cross-sectioned curved strip to a fully closed cylindrical composite tube configuration by examining their distribution pattern as a function of circumferential arc angle (2α). FE tool is additionally utilized to compare the analytical stiffness predictions and analyze the validity of the in-plane analytical stress estimates. Excellent agreement is achieved in comparison between analytical solutions and computationally generated FE results. The central goal of this work is to demonstrate the potential of the formulated mathematical framework in accurately predicting the key mechanical attributes that dictates the structural behavior of curved composite shell members. This analytical model is designed to serve as a robustly efficient tool towards assisting structural design engineers in quickly gaining a broad fundamental understanding on the physical characteristics and structural response of such configurations by accurately conducting simple parametric studies during preliminary design phase prior to performing complex FE analyses.


2019 ◽  
Vol 19 (12) ◽  
pp. 1950160 ◽  
Author(s):  
Jing Zhang ◽  
Jie Xu ◽  
Xuegang Yuan ◽  
Wenzheng Zhang ◽  
Datian Niu

Some significant behaviors on strongly nonlinear vibrations are examined for a thin-walled cylindrical shell composed of the classical incompressible Mooney–Rivlin material and subjected to a single radial harmonic excitation at the inner surface. First, with the aid of Donnell’s nonlinear shallow-shell theory, Lagrange’s equations and the assumption of small strains, a nonlinear system of differential equations for the large deflection vibration of a thin-walled shell is obtained. Second, based on the condensation method, the nonlinear system of differential equations is reduced to a strongly nonlinear Duffing equation with a large parameter. Finally, by the appropriate parameter transformation and modified Lindstedt–Poincar[Formula: see text] method, the response curves for the amplitude-frequency and phase-frequency relations are presented. Numerical results demonstrate that the geometrically nonlinear characteristic of the shell undergoing large vibrations shows a hardening behavior, while the nonlinearity of the hyperelastic material should weak the hardening behavior to some extent.


1989 ◽  
Vol 111 (3) ◽  
pp. 337-342 ◽  
Author(s):  
R. J. Silcox ◽  
H. C. Lester ◽  
S. B. Abler

This paper examines the physical mechanisms governing the use of active noise control in an extended volume of a cylindrical shell. Measured data were compared with computed results from a previously derived analytical model based on infinite shell theory. For both the analytical model and experiment, the radiation of external monopoles is coupled to the internal acoustic field through the radial displacement of the thin, elastic, cylindrical shell. An active noise control system was implemented inside the cylinder using a fixed array of discrete monopole sources, all of which lie in the plane of the exterior noise sources. Good agreement between measurement and prediction was obtained for both internal pressure response and overall noise reduction. Attenuations in the source plane greater than 15 dB were recorded along with a uniformly quieted noise environment over an indicative length inside the experimental model. Results indicate that for forced responses with extended axial distributions, axial arrays of control sources may be required. Finally, the Nyquist criteria for the number of azimuthal control sources is shown to provide for effective control over the full cylinder cross section.


Sign in / Sign up

Export Citation Format

Share Document