A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans, the causal agent of bat white-nose syndrome

Mycologia ◽  
2013 ◽  
Vol 105 (2) ◽  
pp. 237-252 ◽  
Author(s):  
Jeffrey M. Lorch ◽  
Daniel L. Lindner ◽  
Andrea Gargas ◽  
Laura K. Muller ◽  
Andrew M. Minnis ◽  
...  
2012 ◽  
Vol 79 (4) ◽  
pp. 1293-1301 ◽  
Author(s):  
Jeffrey M. Lorch ◽  
Laura K. Muller ◽  
Robin E. Russell ◽  
Michael O'Connor ◽  
Daniel L. Lindner ◽  
...  

ABSTRACTWhite-nose syndrome (WNS) is an emerging disease of hibernating bats caused by the recently described fungusGeomyces destructans. First isolated in 2008, the origins of this fungus in North America and its ability to persist in the environment remain undefined. To investigate the correlation between manifestation of WNS and distribution ofG. destructansin the United States, we analyzed sediment samples collected from 55 bat hibernacula (caves and mines) both within and outside the known range of WNS using a newly developed real-time PCR assay.Geomyces destructanswas detected in 17 of 21 sites within the known range of WNS at the time when the samples were collected; the fungus was not found in 28 sites beyond the known range of the disease at the time when environmental samples were collected. These data indicate that the distribution ofG. destructansis correlated with disease in hibernating bats and support the hypothesis that the fungus is likely an exotic species in North America. Additionally, we examined whetherG. destructanspersists in infested bat hibernacula when bats are absent. Sediment samples were collected from 14 WNS-positive hibernacula, and the samples were screened for viable fungus by using a culture technique. ViableG. destructanswas cultivated from 7 of the 14 sites sampled during late summer, when bats were no longer in hibernation, suggesting that the fungus can persist in the environment in the absence of bat hosts for long periods of time.


Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 296-306 ◽  
Author(s):  
W. E. Fry ◽  
M. T. McGrath ◽  
A. Seaman ◽  
T. A. Zitter ◽  
A. McLeod ◽  
...  

The tomato late blight pandemic of 2009 made late blight into a household term in much of the eastern United States. Many home gardeners and many organic producers lost most if not all of their tomato crop, and their experiences were reported in the mainstream press. Some CSAs (Community Supported Agriculture) could not provide tomatoes to their members. In response, many questions emerged: How did it happen? What was unusual about this event compared to previous late blight epidemics? What is the current situation in 2012 and what can be done? It's easiest to answer these questions, and to understand the recent epidemics of late blight, if one knows a bit of the history of the disease and the biology of the causal agent, Phytophthora infestans.


2015 ◽  
Vol 314 ◽  
pp. 111-117 ◽  
Author(s):  
Robin E. Russell ◽  
Wayne E. Thogmartin ◽  
Richard A. Erickson ◽  
Jennifer Szymanski ◽  
Karl Tinsley

Plant Disease ◽  
2021 ◽  
Author(s):  
Anthony P. Keinath ◽  
Sean M Toporek ◽  
Virginia DuBose ◽  
Sierra H. Zardus ◽  
Justin B. Ballew

In January 2020, charcoal gray, dull lesions were observed on leaves of organic kale (Brassica oleracea var. acephala) cv. Darkibor in two fields in Lexington County, South Carolina, the county with the most acres of leafy brassicas in the state. Leaf spots, also visible on the leaf underside, covered <5% of the leaf area. No spores were present. Portions of leaf spots from eight leaves, four per field, were cultured on one-quarter-strength potato dextrose agar (PDA/4). Eleven isolates of Alternaria spp. were recovered. Isolates ALT12 and UL3 were cultured in A. solani medium and DNA was extracted (Maiero et al. 1991). The internal transcribed spacer (ITS) region, translation elongation factor 1-alpha (tef1), RNA polymerase second largest subunit (rpb2), and Alternaria major allergen (Alt a 1) genes were amplified with the primer pairs V9G/ITS4, EF1-728F/EF1-986R, RPB2-5F2/FRPB2-7cR, and Alt-for/Alt-rev, respectively, and sequenced (Woudenberg et al. 2014). Sequences for isolates ALT12 and UL3, collected from different leaves in the same field, were identical to each other and to isolate AC97 (ITS accession number: LC440597; tef1: LC482018; rpb2: LC476803; Alt a 1: LC481628) of A. japonica Yoshii (Nishikawa and Nakashima 2020). ITS, tef1, repb2, and Alta a 1 sequences for each isolate were deposited in GenBank under the accessions MW374952, MW389653, MW389655, and MW389657 for ALT12 and MW374951, MW389652, MW389654, and MW389656 for UL3, respectively. Conidia of A. japonica (20 of ALT12, 10 of UL3) produced by 7-day-old cultures on Spezieller Nährstoffarmer Agar measured 62.1 ± 11.4 x 18.8 ± 2.2 μm (standard deviation). Median numbers of transverse and longitudinal septae were 6 (4 to 8) and 2 (1 to 3), respectively. Conidia formed singly or in chains of two. Cells were constricted around the transverse septae (Nishikawa and Nakashima 2020; Woudenburg et al. 2014). Chlamydospores were present in cultures of ALT12. ALT12 was pathogenic on kale cv. Darkibor and Winterbor inoculated in a greenhouse following procedures of Al-Lami et al. (2019). Four replicate pots with two plants each were used; plants were 6, 9, and 5 weeks old in trials 1, 2, and 3, respectively. The oldest three leaves of each plant were spray inoculated with a suspension of 5 x 105 conidia/ml; noninoculated control plants were sprayed with water. All plants were kept for 48 h at 100% RH, then moved to a bench in a greenhouse held at 21/16°C day/night temperatures. The second and third oldest leaves were rated 13 days after inoculation. Small gray or black spots developed on inoculated leaves and petioles in all trials, and on one noninoculated leaf in trial one. Disease incidence on inoculated leaves (73.1%) was greater than on noninoculated leaves (0.05%) (P<0.0001). Cultivars did not differ in susceptibility (P=0.12). Portions of lesions on inoculated leaves and portions of noninoculated leaves were cultured onto PDA/4 amended with antibiotics (Keinath 2013). A. japonica was reisolated from 46 of 50 inoculated leaf blades; 22 of 28 inoculated petioles; and 1 of 8, 0 of 8, and 0 of 7 noninoculated leaves in the three trials, respectively. Growers in South Carolina consider black spot, or Alternaria leaf spot, the most important fungal disease on organic kale. The presence of a second causal agent in addition to A. brassicae may increase disease occurrence. A. japonica previously was reported on arugula in California (Tidwell et al. 2014). This is the first report of A. japonica in the eastern United States.


Sign in / Sign up

Export Citation Format

Share Document