scholarly journals Detection of Positive and Negative Gas Ions in Ultraviolet Irradiated Nitrogen Gas and Their Effect on Nitrogen Fixation in Continuous Cultures of Azotobacter vinelandii.

1963 ◽  
Vol 17 ◽  
pp. 2221-2224 ◽  
Author(s):  
Bengt Zacharias ◽  
Raimo Raunio ◽  
Kirsti Lampiaho ◽  
Carl Djerassi ◽  
Jon Munch-Petersen
1963 ◽  
Vol 17 ◽  
pp. 2225-2229 ◽  
Author(s):  
Bengt Zacharias ◽  
Raimo Raunio ◽  
Kirsti Lampiaho ◽  
Carl Djerassi ◽  
Jon Munch-Petersen

1968 ◽  
Vol 14 (1) ◽  
pp. 33-38 ◽  
Author(s):  
M. C. Mahl ◽  
P. W. Wilson

A cell-free system which permits nitrogen fixation by extracts of Klebsiella pneumoniae M5al (formerly Aerobacter aerogenes) has been developed. It is, essentially, that system described by Bulen and associates for Azotobacter vinelandii, utilizing ATP as a source of energy and dithionite as a source of electrons. The Michaelis constant for fixation has been estimated to be 0.12 atm. The extracts possessed an ATP-dependent hydrogen evolving system. Hydrogen evolution from these extracts was less under nitrogen than under helium in the presence of ATP. Nitrogen gas appears to be the inducer of nitrogen fixation. In the absence of N2, no induction of nitrogenase occurs. Nitrogenase is absent in cells grown on NH4+-N. There is a lag of about 13 h after the introduction of N2 gas into a culture which has depleted its supply of NH4+-N before nitrogenase can be detected. For reasons discussed in the text, this conclusion must be regarded as tentative at this time. Ammonium ion appears to prevent the synthesis of new molecules of nitrogenase without affecting the activity of those already formed.


Author(s):  
Yulia V Bertsova ◽  
Marina V Serebryakova ◽  
Alexander A Baykov ◽  
Alexander V Bogachev

Abstract Azotobacter vinelandii, the model microbe in nitrogen fixation studies, uses the ferredoxin:NAD+-oxidoreductase Rnf to regenerate ferredoxin (flavodoxin) acting as an electron donor for nitrogenase. However, the relative contribution of Rnf into nitrogenase functioning is unknown because this bacterium contains another ferredoxin reductase, FixABCX. Furthermore, Rnf is flavinylated in the cell, but the importance and pathway of this modification reaction also remain largely unknown. We have constructed A. vinelandii cells with impaired activities of FixABCX and/or putative flavin transferase ApbE. The ApbE-deficient mutant could not produce covalently flavinylated membrane proteins and demonstrated a markedly decreased flavodoxin:NAD+ oxidoreductase activity and significant growth defect under diazotrophic conditions. The double ΔFix/ΔApbE mutation abolished the flavodoxin:NAD+ oxidoreductase activity and the ability of A. vinelandii to grow in the absence of fixed nitrogen source. ApbE flavinylated a truncated RnfG subunit of Rnf1 by forming a phosphoester bond between FMN and a threonine residue. These findings indicate that Rnf (presumably its Rnf1 form) is the major ferredoxin-reducing enzyme in the nitrogen fixation system and that the activity of Rnf depends on its covalent flavinylation by the flavin transferase ApbE.


Sign in / Sign up

Export Citation Format

Share Document