scholarly journals ACETATE AS A CALCIUM-SPARING FACTOR IN NITROGEN FIXATION BY AZOTOBACTER VINELANDII

1958 ◽  
Vol 44 (5) ◽  
pp. 472-476 ◽  
Author(s):  
R. G. Esposito ◽  
P. W. Wilson
1968 ◽  
Vol 14 (1) ◽  
pp. 33-38 ◽  
Author(s):  
M. C. Mahl ◽  
P. W. Wilson

A cell-free system which permits nitrogen fixation by extracts of Klebsiella pneumoniae M5al (formerly Aerobacter aerogenes) has been developed. It is, essentially, that system described by Bulen and associates for Azotobacter vinelandii, utilizing ATP as a source of energy and dithionite as a source of electrons. The Michaelis constant for fixation has been estimated to be 0.12 atm. The extracts possessed an ATP-dependent hydrogen evolving system. Hydrogen evolution from these extracts was less under nitrogen than under helium in the presence of ATP. Nitrogen gas appears to be the inducer of nitrogen fixation. In the absence of N2, no induction of nitrogenase occurs. Nitrogenase is absent in cells grown on NH4+-N. There is a lag of about 13 h after the introduction of N2 gas into a culture which has depleted its supply of NH4+-N before nitrogenase can be detected. For reasons discussed in the text, this conclusion must be regarded as tentative at this time. Ammonium ion appears to prevent the synthesis of new molecules of nitrogenase without affecting the activity of those already formed.


Author(s):  
Yulia V Bertsova ◽  
Marina V Serebryakova ◽  
Alexander A Baykov ◽  
Alexander V Bogachev

Abstract Azotobacter vinelandii, the model microbe in nitrogen fixation studies, uses the ferredoxin:NAD+-oxidoreductase Rnf to regenerate ferredoxin (flavodoxin) acting as an electron donor for nitrogenase. However, the relative contribution of Rnf into nitrogenase functioning is unknown because this bacterium contains another ferredoxin reductase, FixABCX. Furthermore, Rnf is flavinylated in the cell, but the importance and pathway of this modification reaction also remain largely unknown. We have constructed A. vinelandii cells with impaired activities of FixABCX and/or putative flavin transferase ApbE. The ApbE-deficient mutant could not produce covalently flavinylated membrane proteins and demonstrated a markedly decreased flavodoxin:NAD+ oxidoreductase activity and significant growth defect under diazotrophic conditions. The double ΔFix/ΔApbE mutation abolished the flavodoxin:NAD+ oxidoreductase activity and the ability of A. vinelandii to grow in the absence of fixed nitrogen source. ApbE flavinylated a truncated RnfG subunit of Rnf1 by forming a phosphoester bond between FMN and a threonine residue. These findings indicate that Rnf (presumably its Rnf1 form) is the major ferredoxin-reducing enzyme in the nitrogen fixation system and that the activity of Rnf depends on its covalent flavinylation by the flavin transferase ApbE.


1980 ◽  
Vol 35 (3-4) ◽  
pp. 258-261
Author(s):  
A. Martin Gonzalez ◽  
M. T. Izquierdo

Abstract Electric Field Electric fields of sinusoidal waves have been applied in cultures of Azotobacter vinelandii, with potentials between 0 V and 10 V, intensities from 0 mA to 16 mA and frequencies between 5 Hz and 200 KHz. The influence of the electric field of sinusoidal waves on the nitrogen fixation on the post­ culture medium composition has a maximum at 5 V, 8 mA and 20 Hz. The rate of synthesis of specific amino acids by Azotobacter depends on the frequency and potential of the electric field applied. The concentration of each amino acid present in the post-culture medium is increased according to the electric field employed and the amino acid biosynthesis in culture medium is activated during the first days of incubation.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 220 ◽  
Author(s):  
Henrietta Allaga ◽  
Bettina Bóka ◽  
Péter Poór ◽  
Viktor Dávid Nagy ◽  
Attila Szűcs ◽  
...  

A composite soil bioinoculant containing beneficial bacteria and fungi was developed for biocontrol of plant pathogens, phosphorous mobilization, stem degradation, humification, and nitrogen fixation. A Trichoderma asperellum isolate with outstanding in vitro antagonistic abilities toward a series of plant pathogenic fungi was included as a potential biocontrol component. The selected strain was also shown to promote growth and increase photosynthetic activity of tomato plants. For phosphorous mobilization and stem degradation, a Trichoderma atrobrunneum strain was selected, which produced cellulose-degrading enzymes even in the absence of stem residues, while this ability increased 10–15-fold in the presence of ground maize stem. The strain was also shown to produce large amounts of enzymes liberating organically bound phosphorous, as well as cellulase and xylanase activities in solid-state fermentation on various plant residues. A Streptomyces albus strain with excellent peroxidase-producing abilities was selected as a potential humus-producing component, while an Azotobacter vinelandii strain with the potential to provide excess nitrogen for crops was included for nitrogen fixation. The assembled soil bioinoculant had positive effect on the uptake of certain important macro- and microelements (potassium, sodium, and manganese) from the soil by field-grown tomato plants. The applied screening strategy proved to be applicable for the assembly of a composite soil bioinoculant with notable application potentials.


Sign in / Sign up

Export Citation Format

Share Document