scholarly journals MCMV triggers ROS/NLRP3-associated inflammasome activation in the inner ear of mice and cultured spiral ganglion neurons, contributing to sensorineural hearing loss

Author(s):  
Wei Zhuang ◽  
Caiji Wang ◽  
Xi Shi ◽  
Shiwei Qiu ◽  
Shili Zhang ◽  
...  
2021 ◽  
Vol 15 ◽  
Author(s):  
Lingna Guo ◽  
Wei Cao ◽  
Yuguang Niu ◽  
Shuangba He ◽  
Renjie Chai ◽  
...  

Inner ear hair cells (HCs) and spiral ganglion neurons (SGNs) are the core components of the auditory system. However, they are vulnerable to genetic defects, noise exposure, ototoxic drugs and aging, and loss or damage of HCs and SGNs results in permanent hearing loss due to their limited capacity for spontaneous regeneration in mammals. Many efforts have been made to combat hearing loss including cochlear implants, HC regeneration, gene therapy, and antioxidant drugs. Here we review the role of autophagy in sensorineural hearing loss and the potential targets related to autophagy for the treatment of hearing loss.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yulou Yu ◽  
Jing Yang ◽  
Feng Luan ◽  
Guoqiang Gu ◽  
Ran Zhao ◽  
...  

Deafness is known to occur in more than 400 syndromes and accounts for almost 30% of hereditary hearing loss. The molecular mechanisms underlying such syndromic deafness remain unclear. Furthermore, deafness has been a common feature in patients with three main syndromes, the BÖrjeson-Forssman-Lehmann syndrome, Wildervanck syndrome, and Congenital Generalized Hirsutism, all of which are characterized by loss-of-function mutations in the Fgf13 gene. Whether the pathogenesis of deafness in these syndromes is associated with the Fgf13 mutation is not known. To elucidate its role in auditory function, we generated a mouse line with conditional knockout of the Fgf13 gene in the inner ear (Fgf13 cKO). FGF13 is expressed predominantly in the organ of Corti, spiral ganglion neurons (SGNs), stria vascularis, and the supporting cells. Conditional knockout of the gene in the inner ear led to sensorineural deafness with low amplitude and increased latency of wave I in the auditory brainstem response test but had a normal distortion product otoacoustic emission threshold. Fgf13 deficiency resulted in decreased SGN density from the apical to the basal region without significant morphological changes and those in the number of hair cells. TUNEL and caspase-3 immunocytochemistry assays showed that apoptotic cell death mediated the loss of SGNs. Further detection of apoptotic factors through qRT-PCR suggested the activation of the mitochondrial apoptotic pathway in SGNs. Together, this study reveals a novel role for Fgf13 in auditory function, and indicates that the gene could be a potential candidate for understanding deafness. These findings may provide new perspectives on the molecular mechanisms and novel therapeutic targets for treatment deafness.


2012 ◽  
Vol 9 (3) ◽  
pp. 231-242 ◽  
Author(s):  
Teresa Rivera ◽  
Lorena Sanz ◽  
Guadalupe Camarero ◽  
Isabel Varela-Nieto

1993 ◽  
Vol 21 (4) ◽  
pp. 192-196 ◽  
Author(s):  
Aytac Saraçaydin ◽  
Sedat Katircioğlu ◽  
Sami Katircioğlu ◽  
M Can Karatay

A total of twelve patients with a relatively uncommon form of progressive sensorineural deafness (autoimmune innerear disease) were treated orally with 1 mg/kg azathioprine, once daily, and with 30 mg prednisolone, every other day, for 4 weeks. Statistically significant increases in the ability to hear pure tones or in discrimination on audiometry took place in 10/12 patients. This condition was initially described as ‘sensorineural hearing loss', but it is now clear that the term ‘autoimmune inner-ear disease’ is more appropriate since the vestibular compartment as well as the cochlear compartment is involved. This relatively uncommon disease is one of the few forms of sensorineural deafness that can be successfully treated.


2021 ◽  
Vol 21 ◽  
pp. 209-236
Author(s):  
Kamakshi Bankoti ◽  
Charles Generotti ◽  
Tiffany Hwa ◽  
Lili Wang ◽  
Bert W. O’Malley ◽  
...  

Author(s):  
Sergey Armakov

Sensorineural hearing loss is a disorder associated with the damage to the inner ear structures: the cochlea (cortical organ), dysfunctioning of the vestibule-cochlear nerve or the central part of the auditory analyser (brain stem and cortical representation of the cortical temporal lobe). In recent years, there has been a steady increase in ensorineural hearing loss patients; they account for ca. 70% among the total patients with impaired hearing. The disease has numerous causes and a complex pathogenesis. Among the main factors contributing to hearing loss are genetic predisposition, perinatal pathology, including hypoxia at childbirth, exposure to infectious and toxic agents and metabolic disorders, injuries (mechanical, acoustic and altitude trauma). Vascular-rheological disorders in the vertebro-basilar system play an important part because blood is supplied to the inner ear from the anterior inferior cerebellar artery. There are sudden, acute and chronic sensorineural hearing loss. The ensorineural hearing loss isdiagnosed by examinations that allow to verify the diagnosis and to determine the sound analyser damage level. This complex includes audiometric examinations, including the tuning fork examination, speech audiometry, and acoustic impedancemetry. If necessary, ultrasound Doppler imaging of the main blood vessels of the brain, computed tomography of the temporal bones, and MRI of the brain are prescribed. The pattern of comprehensive treatment should include, first of all, the elimination of the disease cause and anti-hypoxic drugs, anti-oxidants and a number of physiotherapy procedures.


2019 ◽  
Vol 40 (2) ◽  
pp. 274-278
Author(s):  
Kaitian Chen ◽  
Lanying Wen ◽  
Ling Zong ◽  
Min Liu ◽  
Jincangjian Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document