scholarly journals Neuroinflammation and adult hippocampal neurogenesis in neuropathic pain and alkyl�glycerol ethers treatment in aged mice

Author(s):  
Anna Tyrtyshnaia ◽  
Igor Manzhulo ◽  
Yulia Kipryushina ◽  
Ekaterina Ermolenko
2017 ◽  
Vol 119 (8) ◽  
pp. 812-821 ◽  
Author(s):  
Anna A. Tyrtyshnaia ◽  
Igor V. Manzhulo ◽  
Ruslan M. Sultanov ◽  
Ekaterina V. Ermolenko

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1778
Author(s):  
Seungwoo Yoo ◽  
Matthew Stremlau ◽  
Alejandro Pinto ◽  
Hyewon Woo ◽  
Olivia Curtis ◽  
...  

Hyperlipidemia and hypertension are modifiable risk factors for cognitive decline. About 25% of adults over age 65 use both antihypertensives (AHTs) and statins to treat these conditions. Recent research in humans suggests that their combined use may delay or prevent dementia onset. However, it is not clear whether and how combination treatment may benefit brain function. To begin to address this question, we examined effects of atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, and Captopril, an angiotensin-converting enzyme inhibitor (ACEI), administration on memory function, anxiety-like behavior, adult hippocampal neurogenesis and angiogenesis in adult and middle-aged male C57Bl/6J mice. In adult mice (3-months-old) combination (combo) treatment, as well as administration of each compound individually, for six weeks, accelerated memory extinction in contextual fear conditioning. However, pattern separation in the touchscreen-based location discrimination test, a behavior linked to adult hippocampal neurogenesis, was unchanged. In addition, dentate gyrus (DG) neurogenesis and vascularization were unaffected. In middle-aged mice (10-months-old) combo treatment had no effect on spatial memory in the Morris water maze, but did reduce anxiety in the open field test. A potential underlying mechanism may be the modest increase in new hippocampal neurons (~20%) in the combo as compared to the control group. DG vascularization was not altered. Overall, our findings suggest that statin and anti-hypertensive treatment may serve as a potential pharmacotherapeutic approach for anxiety, in particular for post-traumatic stress disorder (PTSD) patients who have impairments in extinction of aversive memories.


2008 ◽  
Vol 105 (5) ◽  
pp. 1585-1594 ◽  
Author(s):  
Chih-Wei Wu ◽  
Ya-Ting Chang ◽  
Lung Yu ◽  
Hsiun-ing Chen ◽  
Chauying J. Jen ◽  
...  

Aging is an important determinant of adult hippocampal neurogenesis as the proliferation of neural stem/precursor cells (NSCs) declines dramatically before middle age. Contrary to this, physical exercise is known to promote adult hippocampal neurogenesis. The objective of this study is to investigate the effects of mandatory treadmill running (TR) on neurogenesis, including 1) NSCs proliferation, 2) neurite outgrowth of neuronal progenitor cells, and 3) the survival of newborn neurons in dentate area of middle-aged animals. Compared with 3-mo-old mice, numbers of mitotic cells and neuronal progenitor cells decreased dramatically by middle age and remained at low levels after middle age. Five weeks of TR not only increased NSC proliferation and the number of immature neurons but also promoted the maturation and survival of immature neurons in middle-aged mice. The neurogenic and neurotrophic effects of TR were not due to the reduction of the age-related elevation of serum corticosterone. Significantly, 5 wk of TR restored the age-dependent decline of brain-derived neurotrophic factor and its receptor, TrkB, which are known to promote neuronal differentiation and survival. Taken together, mandatory running exercise alters the brain chemistries of middle-aged animals toward an environment that is favorable to NSC proliferation, survival, and maturation.


2020 ◽  
Vol 18 ◽  
Author(s):  
Marco Carli ◽  
Stefano Aringhieri ◽  
Shivakumar Kolachalam ◽  
Biancamaria Longoni ◽  
Giovanna Grenno ◽  
...  

: Adult neurogenesis consists in the generation of newborn neurons from neural stem cells taking place in the adult brain. In mammals, this process is limited to very few areas of the brain, and one of these neurogenic niches is the subgranular layer of the dentate gyrus (DG) of the hippocampus. Adult newborn neurons are generated from quiescent neural progenitors (QNPs), which differentiate through different steps into mature granule cells (GCs), to be finally integrated into the existing hippocampal circuitry. In animal models, adult hippocampal neurogenesis (AHN) is relevant for pattern discrimination, cognitive flexibility, emotional processing and resilience to stressful situations. Imaging techniques allow to visualize newborn neurons within the hippocampus through all their stages of development and differentiation. In humans, the evidence of AHN is more challenging, and, based on recent findings, it persists through the adulthood, even if it declines with age. Whether this process has an important role in human brain function and how it integrates into the existing hippocampal circuitry is still a matter of exciting debate. Importantly, AHN deficiency has been proposed to be relevant in many psychiatric disorders, including mood disorders, anxiety, post-traumatic stress disorder and schizophrenia. This review aims to investigate how AHN is altered in different psychiatric conditions and how pharmacological treatments can rescue this process. In fact, many psychoactive drugs, such as antidepressants, mood stabilizers and atypical antipsychotics (AAPs), can boost AHN with different results. In addition, some non-pharmacological approaches are discussed as well.


Sign in / Sign up

Export Citation Format

Share Document