scholarly journals Overexpression of FcγRIIB regulates downstream protein phosphorylation and suppresses B cell activation to ameliorate systemic lupus erythematosus

Author(s):  
Linlin Sheng ◽  
Xiuqin Cao ◽  
Shuhong Chi ◽  
Jing Wu ◽  
Huihui Xing ◽  
...  
2021 ◽  
Vol 207 (11) ◽  
pp. 2660-2672
Author(s):  
Jennifer L. Barnas ◽  
Jennifer Albrecht ◽  
Nida Meednu ◽  
Diana F. Alzamareh ◽  
Cameron Baker ◽  
...  

2016 ◽  
Vol 22 (9) ◽  
pp. 1192-1201 ◽  
Author(s):  
Katalin T Kovacs ◽  
Sudhakar Reddy Kalluri ◽  
Antonio Boza-Serrano ◽  
Tomas Deierborg ◽  
Tunde Csepany ◽  
...  

Background: Neuromyelitis optica (NMO)–systemic lupus erythematosus (SLE) association is a rare condition characterized by multiple autoantibodies. Objective: To examine if, during the evolution of NMO, anti-AQP4 responses are part of polyclonal B cell activation, and if T cell responses contribute. Methods: In 19 samples of six patients who developed NMO during SLE, we examined the correlation of AQP4-IgG1 and IgM with (i) anti-MOG IgG and IgM, (ii) anti-nuclear, anti-nucleosome and anti-dsDNA IgG antibodies, (iii) cytokines and chemokines in the serum and (iv) longitudinal relation to NMO relapses/remission. Results: AQP4-IgG1 was present 1–2–5 years before the first NMO relapse. During relapse, AQP4-IgG1, ANA, anti-dsDNA and anti-nucleosome antibodies were elevated. Anti-MOG IgG/IgM and AQP4-IgM antibodies were not detected. AQP4-IgG1 antibodies correlated with concentration of anti-nucleosome, IFN-γ,interferon-gamma-induced CCL10/IP-10 and CCL17/TARC ( p<0.05, respectively). CCL17/TARC correlated with levels of anti-nucleosome and anti-dsDNA ( p<0.05, respectively). Compared to healthy subjects, concentration of IFN-γ and CCL17/TARC was higher in NMO/SLE ( p<0.05). Conclusions: AQP4-IgG1 antibodies are present in the sera years before the first NMO attack in patients with SLE; elevation of anti-AQP4 is part of a polyclonal B cell response during NMO relapses; in spite of multiple autoantibodies in the serum, MOG antibodies were not present; Th1 responses accompany autoantibody responses in NMO/SLE.


2021 ◽  
Vol 8 (1) ◽  
pp. e000445
Author(s):  
Felice Rivellese ◽  
Sotiria Manou-Stathopoulou ◽  
Daniele Mauro ◽  
Katriona Goldmann ◽  
Debasish Pyne ◽  
...  

ObjectiveTo evaluate the effects of targeting Ikaros and Aiolos by cereblon modulator iberdomide on the activation and differentiation of B-cells from patients with systemic lupus erythematosus (SLE).MethodsCD19+ B-cells isolated from the peripheral blood of patients with SLE (n=41) were cultured with TLR7 ligand resiquimod ±IFNα together with iberdomide or control from day 0 (n=16). Additionally, in vitro B-cell differentiation was induced by stimulation with IL-2/IL-10/IL-15/CD40L/resiquimod with iberdomide or control, given at day 0 or at day 4. At day 5, immunoglobulins were measured by ELISA and cells analysed by flow cytometry. RNA-Seq was performed on fluorescence-activated cell-sorted CD27-IgD+ naïve-B-cells and CD20lowCD27+CD38+ plasmablasts to investigate the transcriptional consequences of iberdomide.ResultsIberdomide significantly inhibited the TLR7 and IFNα-mediated production of immunoglobulins from SLE B-cells and the production of antinuclear antibodies as well as significantly reducing the number of CD27+CD38+ plasmablasts (0.3±0.18, vehicle 1.01±0.56, p=0.011) and CD138+ plasma cells (0.12±0.06, vehicle 0.28±0.02, p=0.03). Additionally, treatment with iberdomide from day 0 significantly inhibited the differentiation of SLE B-cells into plasmablasts (6.4±13.5 vs vehicle 34.9±20.1, p=0.013) and antibody production. When given at later stages of differentiation, iberdomide did not affect the numbers of plasmablasts or the production of antibodies; however, it induced a significant modulation of gene expression involving IKZF1 and IKZF3 transcriptional programmes in both naïve B-cells and plasmablasts (400 and 461 differentially modulated genes, respectively, false discovery rate<0.05).ConclusionThese results demonstrate the relevance of Ikaros and Aiolos as therapeutic targets in SLE due to their ability to modulate B cell activation and differentiation downstream of TLR7.


Sign in / Sign up

Export Citation Format

Share Document