scholarly journals ecocomDP: A data design pattern and R package to facilitate FAIR biodiversity data for ecological synthesis

Author(s):  
Eric Sokol

Two programs that provide high-quality long-term ecological data, the Environmental Data Initiative (EDI) and the National Ecological Observatory Network (NEON), have recently teamed up with data users interested in synthesizing biodiversity data, such as ecological synthesis working groups supported by the US Long Term Ecological Research (LTER) Network Office, to make their data more Findable, Interoperable, Accessible, and Reusable (FAIR). To this end: we have developed a flexible intermediate data design pattern for ecological community data (L1 formatted data in Fig. 1, see Fig. 2 for design details) called "ecocomDP" (O'Brien et al. 2021), and we provide tools to work with data packages in which this design pattern has been implemented. we have developed a flexible intermediate data design pattern for ecological community data (L1 formatted data in Fig. 1, see Fig. 2 for design details) called "ecocomDP" (O'Brien et al. 2021), and we provide tools to work with data packages in which this design pattern has been implemented. The ecocomDP format provides a data pattern commonly used for reporting community level data, such as repeated observations of species-level measures of biomass, abundance, percent cover, or density across multiple locations. The ecocomDP library for R includes tools to search for data packages, download or import data packages into an R (programming language) session in a standard format, and visualization tools for data exploration steps that are recommended for data users prior to any cross-study synthesis work. To date, EDI has created 70 ecocomDP data packages derived from their holdings, which include data from the US Long Term Ecological Research (US LTER) program, Long Term Research in Environmental Biology (LTREB) program, and other projects, which are now discoverable and accessible using the ecocomDP library. Similarly, NEON data products for 12 taxonomic groups are discoverable using the ecocomDP search tool. Input from data users provided guidance for the ecocomDP developers in mapping the NEON data products to the ecocomDP format to facilitate interoperability with the ecocomDP data packages available from the EDI repository. The standardized data design pattern allows common data visualizations across data packages, and has the potential to facilitate the development of new tools and workflows for biodiversity synthesis. The broader impacts of this collaboration are intended to lower the barriers for researchers in ecology and the environmental sciences to access and work with long-term biodiversity data and provide a hub around which data providers and data users can develop best practices that will build a diverse and inclusive community of practice.

2021 ◽  
pp. 100025
Author(s):  
Tamara K. Harms ◽  
Peter M. Groffman ◽  
Lihini Aluwihare ◽  
Chris Craft ◽  
William R Wieder ◽  
...  

BioScience ◽  
2020 ◽  
Vol 70 (2) ◽  
pp. 168-173
Author(s):  
John A Vucetich ◽  
Michael Paul Nelson ◽  
Jeremy T Bruskotter

Abstract Several recent papers have reinvigorated a chronic concern about the need for ecological science to focus more on long-term research. For a few decades, significant voices among ecologists have been assembling elements of a case in favor of long-term ecological research. In this article and for the first time, we synthesize the elements of this case and present it in succinct form. We also argue that this case is unlikely to result in more long-term research. Finally, we present ideas that, if implemented, are more likely to result in appropriate levels of investment in long-term research in ecological science. The article comes at an important time, because the US National Science Foundation is currently undertaking a 40-year review of its Long-Term Ecological Research Network.


BioScience ◽  
2020 ◽  
Vol 70 (4) ◽  
pp. 353-364
Author(s):  
Tian-Yuan Huang ◽  
Martha R Downs ◽  
Jun Ma ◽  
Bin Zhao

Abstract The scale of ecological research is getting larger and larger. At such scales, collaboration is indispensable, but there is little consensus on what factors enable collaboration. In the present article, we investigated the temporal and spatial pattern of institutional collaboration within the US Long Term Ecological Research (LTER) Network on the basis of the bibliographic database. Social network analysis and the Monte Carlo method were applied to identify the characteristics of papers published by LTER researchers within a baseline of papers from 158 leading ecological journals. Long-term and long-distance collaboration were more frequent in the LTER Network, and we investigate and discuss the underlying mechanisms. We suggest that the maturing infrastructure and environment for collaboration within the LTER Network could encourage scientists to make large-scale hypotheses and to ask big questions in ecology.


BioScience ◽  
2003 ◽  
Vol 53 (1) ◽  
pp. 21 ◽  
Author(s):  
JOHN E. HOBBIE ◽  
STEPHEN R. CARPENTER ◽  
NANCY B. GRIMM ◽  
JAMES R. GOSZ ◽  
TIMOTHY R. SEASTEDT

BioScience ◽  
2010 ◽  
Vol 60 (11) ◽  
pp. 931-940 ◽  
Author(s):  
Jeffrey C. Johnson ◽  
Robert R. Christian ◽  
James W. Brunt ◽  
Caleb R. Hickman ◽  
Robert B. Waide

Ecosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
Author(s):  
David M. Iwaniec ◽  
Michael Gooseff ◽  
Katharine N. Suding ◽  
David Samuel Johnson ◽  
Daniel C. Reed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document