scholarly journals Conceptual issues of the cold filter trap development for the sodium coolant purification in fast-neutron reactors

2020 ◽  
Vol 6 (2) ◽  
pp. 105-111
Author(s):  
Viktor V. Alekseev ◽  
Yuliya A. Kuzina ◽  
Aleksandr P. Sorokin

The paper presents the results of studying the peculiarities of heat and mass exchange in cold traps for the sodium purification of impurities in fast reactor circuits both in dedicated test areas simulating various trap components (isothermal sump, nonisothermal sump, filters, final cooling area) and in trap prototype models. As a result, a scientific rationale has been formed for developing traps of a unique design for various reactors. The impurity capacity of the traps is three to four times as high as that of the best foreign counterparts. Tests have shown these to be highly efficient in purifying sodium of oxygen and hydrogen and much less efficient in sodium purification of corrosion products and carbon. Taking into account the leakage of radioactive sodium during operation of the BN-600 reactor primary circuit traps, a decision was made to install the purification system in the reactor tank to improve the safety of the large fast reactor. It was resolved to exclude the accumulation of hydrogen in the primary circuit traps in nominal conditions. Two trap designs, with argon and sodium cooling, are discussed. It has been shown that operation of the reactor purification system with argon cooling will require 20 trap replacements during the reactor operating life and seven replacements if the deposition of hydrogen into the primary circuit cold traps is excluded. The sodium-cooled version of the trap built in the reactor tank has the same overall dimensions as the argon-cooled trap. The cooling sodium circulates in two trains: outside the jacketed working space body (up to 30% of the flow rate) and in the coil inside of the working space (up to 70% of the flow rate). Updates have been proposed to the trap design based on the calculations using the codes simulating the in-trap processes of heat and mass exchange.

Kerntechnik ◽  
2021 ◽  
Vol 86 (1) ◽  
pp. 45-49
Author(s):  
N. V. Maslov ◽  
E. I. Grishanin ◽  
P. N. Alekseev

Abstract This paper presents results of calculation studies of the viability of coated particles in the conditions of the reactor core on fast neutrons with sodium cooling, justifying the development of the concept of the reactor BN with microspherical fuel. Traditional rod fuel assemblies with pellet MOX fuel in the core of a fast sodium reactor are directly replaced by fuel assemblies with micro-spherical mixed (U,Pu)C-fuel. Due to the fact that the micro-spherical (U, Pu)C fuel has a developed heat removal surface and that the design solution for the fuel assembly with coated particles is horizontal cooling of the microspherical fuel, the core has additional possibilities of increasing inherent (passive) safety and improve the competitiveness of BN type of reactors. It is obvious from obtained results that the microspherical (U, Pu)C fuel is limited with the maximal burn-up depth of ∼11% of heavy atoms in conditions of the sodium-cooled fast reactor core at the conservative approach; it gives the possibility of reaching stated thermal-hydraulic and neutron-physical characteristics. Such a tolerant fuel makes it less likely that fission products will enter the primary circuit in case of accidents with loss of coolant and the introduction of positive reactivity, since the coating of microspherical fuel withstands higher temperatures than the steel shell of traditional rod-type fuel elements.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Mengqi Lou ◽  
Liguo Zhang ◽  
Feng Xie ◽  
Jianzhu Cao ◽  
Jiejuan Tong ◽  
...  

After the successful construction and operation experience of the 10 MW high-temperature gas-cooled reactor (HTR-10), a high-temperature gas-cooled pebble-bed modular (HTR-PM) demonstration plant is under construction in Shidao Bay, Rongcheng City, Shandong province, China. An online gross γ monitoring instrument has been designed and placed at the exit of the helium purification system (HPS) of HTR-PM and is used to detect the activity concentration in the primary circuit after purification. The source terms in the primary loop of HTR-PM and the helium purification process were described. The detailed configuration of the gross γ monitoring instrument was presented in detail. The Monte Carlo method was used to simulate the detection efficiency of the monitoring system. Since the actual source terms in the primary loop of HTR-PM may be different than the current design values, a sensitivity analysis of the detection efficiency was implemented based on different relative proportions of the nuclides. The accuracy and resolution of the NaI(Tl) detector were discussed as well.


2018 ◽  
Vol 6 (1 (96)) ◽  
pp. 47-54 ◽  
Author(s):  
Aleksey Zagorulko ◽  
Andrii Zahorulko ◽  
Kateryna Kasabova ◽  
Vitalii Chervonyi ◽  
Oleksandr Omelchenko ◽  
...  

2014 ◽  
Vol 1 (8(67)) ◽  
pp. 21
Author(s):  
Михайло Костянтинович Безродний ◽  
Микола Никифорович Голіяд ◽  
Артур Юрійович Рачинський

Sign in / Sign up

Export Citation Format

Share Document