scholarly journals A new Vaejovis C.L. Koch, 1836, the second known vorhiesi group species from the Santa Catalina Mountains of Arizona (Scorpiones, Vaejovidae)

ZooKeys ◽  
2013 ◽  
Vol 270 ◽  
pp. 21-35 ◽  
Author(s):  
Richard Ayrey ◽  
Michael Webber
1996 ◽  
Vol 40 (9) ◽  
pp. 2232-2235 ◽  
Author(s):  
H M Wexler ◽  
E Molitoris ◽  
D Molitoris ◽  
S M Finegold

The antimicrobial activity of trovafloxacin for 557 strains of anaerobic bacteria was determined by the National Committee for Clinical Laboratory Standards-approved Wadsworth agar dilution technique. The species tested included Bacteroides fragilis (n = 91), other members of the B. fragilis group (n = 130), Campylobacter gracilis (n = 15), other Bacteroides spp. (n = 16), Prevotella spp. (n = 49), Porphyromonas spp. (n = 15), Fusobacterium spp. (n = 62), Bilophila wadsworthia (n = 24), Sutterella wadsworthensis (n = 21), Clostridium spp. (n = 61), Peptostreptococcus spp. (n = 38), and gram-positive non-spore-forming rods (n = 35). Trovafloxacin inhibited all strains of B. fragilis at < or = 0.5 microgram/ml, 99% of other B. fragilis group species at < or = 2 micrograms/ml, and 96% of all anaerobes tested at < or = 2 micrograms/ml.


2018 ◽  
Vol 92 (11) ◽  
Author(s):  
Xiaoman Sun ◽  
Lihong Wang ◽  
Jianxun Qi ◽  
Dandi Li ◽  
Mengxuan Wang ◽  
...  

ABSTRACTGroup/species C rotaviruses (RVCs) have been identified as important pathogens of acute gastroenteritis (AGE) in children, family-based outbreaks, as well as animal infections. However, little is known regarding their host-specific interaction, infection, and pathogenesis. In this study, we performed serial studies to characterize the function and structural features of a human G4P[2] RVC VP8* that is responsible for the host receptor interaction. Glycan microarrays demonstrated that the human RVC VP8* recognizes type A histo-blood group antigens (HBGAs), which was confirmed by synthetic glycan-/saliva-based binding assays and hemagglutination of red blood cells, establishing a paradigm of RVC VP8*-glycan interactions. Furthermore, the high-resolution crystal structure of the human RVC VP8* was solved, showing a typical galectin-like structure consisting of two β-sheets but with significant differences from cogent proteins of group A rotaviruses (RVAs). The VP8* in complex with a type A trisaccharide displays a novel ligand binding site that consists of a particular set of amino acid residues of the C-D, G-H, and K-L loops. RVC VP8* interacts with type A HBGAs through a unique mechanism compared with that used by RVAs. Our findings shed light on the host-virus interaction and the coevolution of RVCs and will facilitate the development of specific antivirals and vaccines.IMPORTANCEGroup/species C rotaviruses (RVCs), members ofReoviridaefamily, infect both humans and animals, but our knowledge about the host factors that control host susceptibility and specificity is rudimentary. In this work, we characterized the glycan binding specificity and structural basis of a human RVC that recognizes type A HBGAs. We found that human RVC VP8*, the rotavirus host ligand binding domain that shares only ∼15% homology with the VP8* domains of RVAs, recognizes type A HBGA at an as-yet-unknown glycan binding site through a mechanism distinct from that used by RVAs. Our new advancements provide insights into RVC-cell attachment, the critical step of virus infection, which will in turn help the development of control and prevention strategies against RVs.


2019 ◽  
Author(s):  
Andrea Acurio ◽  
Flor T. Rhebergen ◽  
Sarah Paulus ◽  
Virginie Courtier-Orgogozo ◽  
Michael Lang

AbstractBackgroundMale genitals have repeatedly evolved left-right asymmetries, and the causes of such evolution remain unclear. TheDrosophila nannopteragroup contains four species, among which three exhibit left-right asymmetries of distinct genital organs. In the most studied species,Drosophila pachea, males display asymmetric genital lobes and they mate right-sided on top of the female. Copulation position of the other species is unknown.ResultsTo assess whether the evolution of genital asymmetry could be linked to the evolution of one-sided mating, we examined phallus morphology and copulation position inD. pacheaand closely related species. The phallus was found to be symmetric in all investigated species exceptD. pachea, which display an asymmetric phallus with a right-sided gonopore, andD. acanthoptera, which harbor an asymmetrically bent phallus. In all examined species, males were found to position themselves symmetrically on top of the female, except inD. pacheaandD. nannoptera, where males mated right-sided, in distinctive, species-specific positions. In addition, the copulation duration was found to be increased innannopteragroup species compared to closely related outgroup species.ConclusionOur study shows that gains, and possibly losses, of asymmetry in genital morphology and mating position have evolved repeatedly in thenannopteragroup. Current data does not allow us to conclude whether genital asymmetry has evolved in response to changes in mating position, or vice versa.


ZooKeys ◽  
2009 ◽  
Vol 20 ◽  
pp. 53-118 ◽  
Author(s):  
Norman Johnson ◽  
Matthew Yoder ◽  
Andrew Polaszek ◽  
Lubomir Masner ◽  
Alejandro Valerio
Keyword(s):  

2021 ◽  
Vol 5 (5) ◽  
Author(s):  
Juha Salokannel ◽  
Kyung Min Lee ◽  
Aki Rinne ◽  
Marko Mutanen

Abstract Large-scale global efforts on DNA barcoding have repeatedly revealed unexpected patterns of variability in mtDNA, including deep intraspecific divergences and haplotype sharing between species. Understanding the evolutionary causes behind these patterns calls for insights from the nuclear genome. While building a near-complete DNA barcode library of Finnish caddisflies, a case of barcode-sharing and some cases of deep intraspecific divergences were observed. In this study, the Apatania zonella (Zetterstedt, 1840) group and three Limnephilus Leach, 1815 species were studied using double digest RAD sequencing (ddRAD-seq), morphology, and DNA barcoding. The results support the present species boundaries in the A. zonella group species. A morphologically distinct but mitogenetically nondistinct taxon related to parthenogenetic Apatania hispida (Forsslund, 1930) got only weak support for its validity as a distinct species. The morphology and genomic-scale data do not indicate cryptic diversity in any of the three Limnephilus species despite the observed deep intraspecific divergences in DNA barcodes. This demonstrates that polymorphism in mtDNA may not reflect cryptic diversity, but mitonuclear discordance due to other evolutionary causes.


Nematology ◽  
2003 ◽  
Vol 5 (1) ◽  
pp. 99-111 ◽  
Author(s):  
Zahra Tanha Maafi ◽  
Sergei Subbotin ◽  
Maurice Moens

Abstract RFLP and sequences of ITS-rDNA of 45 populations of cyst-forming nematodes collected from different parts of Iran were analysed and identified as representatives of 21 species. Eight enzymes generated RFLP for all studied populations. Comparison of RFLP profiles and sequences of the ITS regions with published data confirmed the presence of Heterodera avenae, H. filipjevi, H. glycines, H. hordecalis, H. latipons, H. schachtii and H. trifolii in Iran. RFLP patterns and ITS sequences for H. elachista, H. turcomanica, H. mothi and C. cacti were obtained for the first time in this study. Heterodera humuli, H. goettingiana, H. fici, H. elachista, H. turcomanica and Cactodera cacti are recorded for the first time in Iran. These results correspond with morphological and morphometric identification of the populations. Several populations were not identified at the species level and are attributed to Heterodera sp.; some of these may correspond to new species. Twenty-one new sequences from Iranian cyst-forming nematodes and 36 known sequences were used for the phylogenetic analyses. The cyst-forming nematodes formed several clades corresponding to their morphological features. Heterodera mothi and H. elachista clustered with high support with other Cyperi group species and H. turcomanica formed a moderately to highly supported clade with the Humuli group.


1989 ◽  
Vol 63 (4) ◽  
pp. 454-483 ◽  
Author(s):  
Barry S. Kues

The benthic, free-living oyster Texigryphaea was the dominant constituent of many late Albian marine communities in the Texas and southern Western Interior regions. Large topotypic assemblages of three common lower–middle Washita Group species (T. navia and T. pitcheri in Oklahoma and T. tucumcarii in New Mexico) each display considerable morphological variation in valve shape and the proportions and expression of various features. Variation within an assemblage is partly due to ontogenetic changes but is mainly ecophenotypic, with local variation in nature of substrate, water turbulence, length of attachment time, and other factors influencing the final morphology of the mature shell. The T. navia assemblage is distinct in several important morphological characters from the other species, and the differences become more pronounced with growth. Texigryphaea navia appears to have been adapted to relatively firm substrates in moderately agitated conditions, in contrast to the other species, which occupied softer substrates in quieter environments. The essentially contemporaneous T. pitcheri and T. tucumcarii assemblages display much overlap in all measured dimensions of the left valve and in the range of intergrading morphs that compose each assemblage. Accordingly, T. tucumcarii is considered a synonym of T. pitcheri, representing populations of that species that lived in the West Texas-New Mexico area and developed only minor differences from the eastern populations. Within the T. navia topotypic assemblage are specimens intermediate between T. navia and T. pitcheri, and the eastern and western T. pitcheri assemblages contain forms apparently transitional to two other species, T. washitaensis and T. belviderensis. Ecophenotypic variation in the T. pitcheri assemblages appears to be greater than that in European Jurassic Gryphaea species and mirrors to some extent phyletic variation in European Jurassic Gryphaea lineages.


Sign in / Sign up

Export Citation Format

Share Document