turbulence length
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 23)

H-INDEX

17
(FIVE YEARS 1)

2022 ◽  
pp. 1-33
Author(s):  
Tommaso Lenzi ◽  
Alessio Picchi ◽  
Antonio Andreini ◽  
Bruno Facchini

Abstract The analysis of the interaction between the swirling and liner film-cooling flows is a fundamental task for the design of turbine combustion chambers since it influences different aspects such as emissions and cooling capability. Particularly, high turbulence values, flow instabilities, and tangential velocity components induced by the swirlers deeply affect the behavior of effusion cooling jets, demanding for dedicated time-resolved near-wall analysis. The experimental setup of this work consists of a non-reactive single-sector linear combustor test rig scaled up with respect to engine dimensions; the test section was equipped with an effusion plate with standard inclined cylindrical holes to simulate the liner cooling system. The rig was instrumented with a 2D Time-Resolved Particle Image Velocimetry system, focused on different field of views. The degree of swirl is usually characterized by the swirl number, Sn, defined as the ratio of the tangential momentum to axial momentum flux. To assess the impact of such parameter on the near-wall effusion behavior, a set of three axial swirlers with swirl number equal to Sn = 0.6 − 0.8 − 1.0 were designed and tested in the experimental apparatus. An analysis of the main flow by varying the Sn was first performed in terms of average velocity, RMS, and Tu values, providing kinetic energy spectra and turbulence length scale information. Following, the analysis was focused on the near-wall regions: the effects of Sn on the coolant jets was quantified in terms of vorticity analysis and jet oscillation.


Author(s):  
Shrey Trivedi ◽  
R. S. Cant

AbstractThe effects of varying turbulence intensity and turbulence length scale on premixed turbulent flame propagation are investigated using Direct Numerical Simulation (DNS). The DNS dataset contains the results of a set of turbulent flame simulations based on separate and systematic changes in either turbulence intensity or turbulence integral length scale while keeping all other parameters constant. All flames considered are in the thin reaction zones regime. Several aspects of flame behaviour are analysed and compared, either by varying the turbulence intensity at constant integral length scale, or by varying the integral length scale at constant turbulence intensity. The turbulent flame speed is found to increase with increasing turbulence intensity and also with increasing integral length scale. Changes in the turbulent flame speed are generally accounted for by changes in the flame surface area, but some deviation is observed at high values of turbulence intensity. The probability density functions (pdfs) of tangential strain rate and mean flame curvature are found to broaden with increasing turbulence intensity and also with decreasing integral length scale. The response of the correlation between tangential strain rate and mean flame curvature is also investigated. The statistics of displacement speed and its components are analysed, and the findings indicate that changes in response to decreasing integral length scale are broadly similar to those observed for increasing turbulence intensity, although there are some interesting differences. These findings serve to improve current understanding of the role of turbulence length scales in flame propagation.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Vitalii Yanovych ◽  
Daniel Duda ◽  
Vaclav Uruba ◽  
Pavel Antoš

AbstractFeature of turbulent flow anisotropy behavior behind an asymmetric NACA 64-618 airfoil investigated in this paper. Experimental studies were performed using a hot-wire anemometery with X-probe at the chord-based Reynolds number $$1.7 \times 10^5$$ 1.7 × 10 5 . The average ensemble velocity and Reynolds stress components are used to determine the wake topology and anisotropy of turbulence. The obtained data allowed to identify the outside wake region, which is characterized by low instability and a high degree of anisotropy of the turbulent flow. This tendency is observed at different angles incident. Further, to gain better insight into the physics of this phenomenon the structure of turbulence have been evaluated. Integral turbulence length and time scales were estimated by the area of the autocorrelation function of velocity fluctuations. Then, using the second-order structural function, we obtained the dissipation characteristics of the flow. In addition, the features of the energy spectrum in the region with high and low degrees of turbulence anisotropy were analyzed.


2021 ◽  
Author(s):  
Soon Hong Chew ◽  
Su Min Hoi ◽  
Manh-Vu Tran ◽  
Ji Jinn Foo

Abstract The impacts of partially-covered fractal grids induced turbulence on the forced convective heat transfer across plate-fin heat sink at Reynolds number ReDh=22.0×103 were numerically and experimentally investigated. Results showed that partially covered grids rendered a higher thermal dissipation performance, with partially covered square fractal grid (PCSFG) registering an outstanding increase of 43% in Nusselt number relative to the no grid configuration. The analyzation via an in-house developed single particle tracking velocimetry (SPTV) system displayed the findings of unique “Turbulence Annulus” formation, which provided a small degree of predictivity in the periodic annulus oscillations. Further assessments on PCSFG revealed the preferred inter-fin flow dynamics of (i) high flow velocity, (ii) strong turbulence intensity, (iii) vigorous flow fluctuations, (iv) small turbulence length scale, and (v) heightened decelerated flow events. Furthermore, power spectra density unveiled the powerful vortex shedding effect, with PCSFG achieving fluctuation frequency f=18.5Hz close to an optimal magnitude. Such intricate flow structures pave the way for superior thermal transfer capabilities, benefiting the community in developing for higher efficiency heat transfer systems.


Author(s):  
Xiaomin Chen ◽  
George H. Bryan ◽  
Jun A. Zhang ◽  
Joseph J. Cione ◽  
Frank D. Marks

AbstractBoundary layer turbulent processes affect tropical cyclone (TC) structure and intensity change. However, uncertainties in the parameterization of the planetary boundary layer (PBL) under high-wind conditions remain challenging, mostly due to limited observations. This study presents and evaluates a framework of numerical simulation that can be used for a small-domain [O(5 km)] large-eddy simulation (LES) and single-column modeling (SCM) to study the TC boundary layer. The framework builds upon a previous study that uses a few input parameters to represent the TC vortex and adds a simple nudging term for temperature and moisture to account for the complex thermodynamic processes in TCs. The reference thermodynamic profiles at different wind speeds are retrieved from a composite analysis of dropsonde observations of mature hurricanes. Results from LES show that most of the turbulence kinetic energy and vertical momentum flux is associated with resolved processes when horizontal grid spacing is O(10 m). Comparison to observations of turbulence variables such as momentum flux, effective eddy viscosity, and turbulence length scale show that LES produces reasonable results but highlight areas where further observations are necessary. LES results also demonstrate that compared to a classic Ekman-type boundary layer, the TC boundary layer is shallower, develops steady conditions much quicker, and exhibits stronger wind speed near the surface. The utility of this framework is further highlighted by evaluating a first-order PBL parameterization, suggesting that an asymptotic turbulence length scale of 40 m produces a good match to LES results.


Author(s):  
Ettore Bertolini ◽  
Paul Pieringer ◽  
Wolfgang Sanz

The aim of this work is to study the influence of different subgrid-scale (SGS) closure models and inflow turbulence conditions on the boundary layer transition on the suction side of a highly loaded transonic turbine cascade in the presence of high free-stream turbulence using large eddy simulations (LES) of the MUR237 test case. For the numerical simulations, the MUR237 flow case was considered and the incoming free-stream turbulence was reproduced using the synthetic eddy method (SEM). The boundary layer transition on the blade suction side was found to be significantly influenced by the choice of the SGS closure model and the SEM parameters. These two aspects were carefully evaluated in this work. Initially, the influence of three different closure models (Smagorinsky, WALE, and subgrid-scale kinetic energy model) was evaluated. Among them, the WALE SGS closure model performed best compared to the Smagorinsky and KEM models and, for this reason, was used in the following analysis. Finally, different values of the turbulence length scale, eddies density, and inlet turbulence for the SEM were evaluated. As shown by the results, among the different parameters, the choice of the turbulence length scale plays a major role in the transition onset on the blade suction side.


2021 ◽  
Author(s):  
Nikolas Angelou ◽  
Jakob Mann ◽  
Ebba Dellwik

Abstract. Solitary trees are natural land surface elements, found in almost all climates, yet their influence on the surrounding air flow is poorly known. Here we use state-of-the-art, laser-based, remote sensing instruments to study the turbulent wind field in the near-wake region of a mature, open-grown oak tree. Our measurements provide for the first time a full picture of the mixing layer of high turbulence that surrounds the mean wind speed deficit. In this layer, we validate the eddy-viscosity hypothesis, a fundamental theory used in modelling the wind conditions. Using the mixing-length hypothesis we find that for this tree the corresponding turbulence length scale in that layer can be approximated by one, height-independent value. Further, the laser-based scanning technology used here was able to accurately reveal three-dimensional turbulent and spatially varying atmospheric flows over a large plane, without seeding or intruding the atmospheric flow. This capability points to a new and more exact way of exploring the complex earth-atmosphere interactions.


2021 ◽  
Author(s):  
Stephanie Reilly ◽  
Ivan Bašták Ďurán ◽  
Juerg Schmidli

<p>The most frequently used boundary-layer turbulence parameterization in numerical weather prediction (NWP) and general circulation (GC) models are turbulence kinetic energy (TKE) based schemes. However, these parameterizations suffer from a potential weakness, namely the strong dependence on an ad-hoc quantity, the so-called turbulence length scale. The turbulence length scale is used to parameterize the molecular dissipation of TKE and is required to calculate the turbulence exchange coefficients. Traditional turbulence length scale formulations are designed for scales that are located above the energy production range of the turbulence spectra, hence the transfer of TKE across scales is not considered. However, as computational power increase, there is an increase in the potential for simulating turbulence at resolutions that are within the energy production range of turbulence. This is a gray zone problem. In order to represent turbulence processes accurately at these resolutions, the transfer of TKE across scales needs to be accounted for. For this purpose, a new turbulence length scale diagnostic, that can be used in the development of new turbulence length scale formulations, has been developed.  The new diagnostic uses the budget of TKE and the budgets of scalar variances to estimate the effective dissipation rate, which encapsulate the sum of the molecular dissipation and the cross-scale TKE transfer. The effective dissipation rate is then associated with the new scale-dependent turbulence length scale. Several idealized LES cases, simulated with the MicroHH model, are used to diagnose the turbulence length scale. It has been found that in the gray zone of turbulence the new turbulence length scale strongly depends on the horizontal grid spacing, and that this scale-dependence is also height-dependent. The new diagnostic is used for the evaluation of existing turbulence length scale formulations.</p>


2021 ◽  
Author(s):  
Ivan Bastak Duran ◽  
Mirjana Sakradzija ◽  
Juerg Schmidli

<p>An update of the two-energy turbulence scheme is presented. The two-energy scheme is an extension of a Turbulence Kinetic Energy (TKE) scheme following the ideas of Zilitinkevich et al. (2013), but valid for the whole stability range and including the influence of moisture. The additional turbulence prognostic energy is used for the calculation of the stability parameter. The stability parameter is thus not anymore strictly local and has a prognostic character. These characteristics enable the two-energy scheme to model both turbulence and clouds in the atmospheric boundary layer. The original implementation of the two-energy scheme is able to successfully model shallow convection without the need of an additional parameterization for non-local fluxes. However, the performance of the two-energy scheme is worse in stratocumulus cases, where it tends to overestimate the erosion of the stable layers due to over-mixing. We have identified the causes of the over-mixing in the stable layers.  First, the non-local stability parameter does not consider local stratification, which leads to its underestimation and subsequent over-mixing.  Second, the scheme lacks an internal parameter that could distinguish between a shallow convection regime and a stratocumulus regime, thus the scheme can not be calibrated in this respect.  And third, the turbulence length scale formulation is not flexible enough to adjust to all possible regimes in the ABL. To alleviate this problem, we propose several modifications: an update of the stability parameter, a modified computation of the turbulence length scale, and introduction of the influence of entropy potential temperature into the scheme. In addition, the two-energy scheme is coupled to a simplified assumed PDF method in order to achieve a more universal representation of the cloudy regimes. The updated turbulence scheme is evaluated for selected idealized and real cases in the ICON modeling framework.</p>


Sign in / Sign up

Export Citation Format

Share Document