genomic scale
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 55)

H-INDEX

43
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Damien Beau Wilburn ◽  
Christy L Kunkel ◽  
Richard C Feldhoff ◽  
Pamela W Feldhoff ◽  
Brian C Searle

The proteomic composition of amphibian gametes is largely a molecular mystery, particularly for Urodeles (salamanders and newts) which have few genomic-scale resources. Lungless salamanders (family Plethodontidae) include approximately two thirds of all extant salamander species and are classic models of vertebrate mating behavior. As part of an extended, multi-stage courtship ritual, male plethodontid salamanders deliver rapidly evolving protein pheromones that modify female behavior and improve male reproductive success. Despite great interest in this set of pre-mating reproductive barriers, limited characterization of plethodontid gametes has prohibited investigation of post-mating pre-zygotic barriers such as sperm-egg recognition. In this study, we performed transcriptomic analyses of testis and ovary using long-read PacBio sequencing and proteomic analyses of sperm using mass spectrometry for two evolutionary divergent plethodontid species, Plethodon shermani and Desmognathus ocoee. In both species, many of the most abundant sperm proteins were paralogs of the courtship pheromones Plethodontid Receptivity Factor (PRF), Plethodontid Modulating Factor (PMF), and Sodefrin Precursor-like Factor (SPF). Sperm-specific paralogs of PMF and SPF are likely the most abundant secreted proteins in P. shermani and D. ocoee, respectively. In contrast, sperm PRF lacks a signal peptide and may be expressed in cytoplasm. PRF pheromone genes evolved independently multiple times through repeated gene duplication of sperm PRF genes and signal peptides recovered by recombination with PMF genes. Phylogenetic analysis of courtship pheromones and their sperm paralogs support that each protein family evolved for these two reproductive contexts at distinct evolutionary time points between 17 and 360 million years ago. As the first molecular characterization of salamander gametes, this study expands our knowledge of amphibian fertilization beyond frogs and provides novel insight into the evolutionary processes by which new, rapidly evolving reproductive proteins may evolve.


2021 ◽  
Vol 8 (1) ◽  
pp. 5
Author(s):  
Qi Wu ◽  
Yi Wang ◽  
Li-Na Liu ◽  
Kai Shi ◽  
Cheng-Yun Li

Magnaporthe oryzae caused huge losses in rice and wheat production worldwide. Comparing to long-term co-evolution history with rice, wheat-infecting isolates were new-emerging. To reveal the genetic differences between rice and wheat blast on global genomic scale, 109 whole-genome sequences of M. oryzae from rice, wheat, and other hosts were reanalyzed in this study. We found that the rice lineage had gone through stronger selective sweep and fewer conserved genes than those of Triticum and Lolium lineages, which indicated that rice blast fungi adapted to rice by gene loss and rapid evolution of specific loci. Furthermore, 228 genes associated with host adaptation of M. oryzae were found by presence/absence variation (PAV) analyses. The functional annotation of these genes found that the fine turning of genes gain/loss involved with transport and transcription factor, thiol metabolism, and nucleotide metabolism respectively are major mechanisms for rice adaption. This result implies that genetic base of specific host plant may lead to gene gain/loss variation of pathogens, so as to enhance their adaptability to host. Further characterization of these specific loci and their roles in adaption and evaluation of the fungi may eventually lead to understanding of interaction mechanism and develop new strategies of the disease management.


2021 ◽  
Author(s):  
Gareth S. Powell ◽  
Natalie A. Saxton ◽  
Yelena Pacheco ◽  
Kathrin F. Stanger-Hall ◽  
Gavin J. Martin ◽  
...  

Bioluminescence is found across life and has many functions. Yet we understand very little about its timing and origins, particularly as a predator avoidance strategy. Understanding the timing between bioluminescence and predator origins has yet to be examined and can help elucidate the evolution of the ecologically important signal aposematism. Using the most prevalent bioluminescent group, fireflies, where bioluminescence primarily functions as aposematic and sexual signals, the timing for the origins of both potential predators of fireflies and bioluminescence is explored. Divergence time estimations were performed using a genomic-scale phylogenetic reconstruction Lampyridae, and multiple fossil calibration points, allowing for a robust estimate for the origin of beetle bioluminescence as both a terrestrial and aerial signal. Our results recover the origins of terrestrial beetle bioluminescence at 141 mya and aerial bioluminescence at 133 mya. These ages predate the origins of all known extant aerial predators (i.e., bats and birds) and support the much older terrestrial predators (frogs, ground beetles, lizards, snakes, and hunting spiders) as the most likely drivers of bioluminescence in beetles.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259456
Author(s):  
Md Nafis Ul Alam ◽  
G. M. Nurnabi Azad Jewel ◽  
Tomalika Azim ◽  
Zeba I. Seraj

Farmland is on the decline and worldwide food security is at risk. Rice is the staple of choice for over half the Earth’s people. To sustain current demands and ascertain a food secure future, substandard farmland affected by abiotic stresses must be utilized. For rapid crop improvement, a broader understanding of polygenic traits like stress tolerance and crop yield is indispensable. To this end, the hidden diversity of resilient and neglected wild varieties must be traced back to their genetic roots. In this study, we separately assayed 11 phenotypes in a panel of 176 diverse accessions predominantly comprised of local landraces from Bangladesh. We compiled high resolution sequence data for these accessions. We collectively studied the ties between the observed phenotypic differences and the examined additive genetic effects underlying these variations. We applied a fixed effect model to associate phenotypes with genotypes on a genomic scale. Discovered QTLs were mapped to known genes. Our explorations yielded 13 QTLs related to various traits in multiple trait classes. 10 identified QTLs were equivalent to findings from previous studies. Integrative analysis assumes potential novel functionality for a number of candidate genes. These findings will usher novel avenues for the bioengineering of high yielding crops of the future fortified with genetic defenses against abiotic stressors.


2021 ◽  
Vol 5 (5) ◽  
Author(s):  
Juha Salokannel ◽  
Kyung Min Lee ◽  
Aki Rinne ◽  
Marko Mutanen

Abstract Large-scale global efforts on DNA barcoding have repeatedly revealed unexpected patterns of variability in mtDNA, including deep intraspecific divergences and haplotype sharing between species. Understanding the evolutionary causes behind these patterns calls for insights from the nuclear genome. While building a near-complete DNA barcode library of Finnish caddisflies, a case of barcode-sharing and some cases of deep intraspecific divergences were observed. In this study, the Apatania zonella (Zetterstedt, 1840) group and three Limnephilus Leach, 1815 species were studied using double digest RAD sequencing (ddRAD-seq), morphology, and DNA barcoding. The results support the present species boundaries in the A. zonella group species. A morphologically distinct but mitogenetically nondistinct taxon related to parthenogenetic Apatania hispida (Forsslund, 1930) got only weak support for its validity as a distinct species. The morphology and genomic-scale data do not indicate cryptic diversity in any of the three Limnephilus species despite the observed deep intraspecific divergences in DNA barcodes. This demonstrates that polymorphism in mtDNA may not reflect cryptic diversity, but mitonuclear discordance due to other evolutionary causes.


2021 ◽  
Author(s):  
Tauana Junqueira Cunha ◽  
James Davis Reimer ◽  
Gonzalo Giribet

Abstract Phylogenetic analyses may suffer from multiple sources of error leading to conflict between genes and methods of inference. The evolutionary history of the mollusc clade Vetigastropoda makes them susceptible to these conflicts, their higher level phylogeny remaining largely unresolved. Originating over 350 million years ago, vetigastropods were the dominant marine snails in the Paleozoic. Multiple extinction events and new radiations have resulted in both very long and very short branches and a large extant diversity of over 4000 species. This is the perfect setting of a hard phylogenetic question in which sources of conflict can be explored. We present 41 new transcriptomes across the diversity of vetigastropods (62 terminals total), and provide the first genomic-scale phylogeny for the group. We find that deep divergences differ from previous studies in which long branch attraction was likely pervasive. Robust results leading to changes in taxonomy include the paraphyly of the order Lepetellida and the family Tegulidae. Tectinae subfam. nov. is designated for the clade comprising Tectus, Cittarium and Rochia. For two early divergences, topologies disagreed between concatenated analyses using site heterogeneous models vs. concatenated partitioned analyses and summary coalescent methods. We investigated rate and composition heterogeneity among genes, as well as missing data by locus and by taxon, none of which had an impact on the inferred topologies. We also found no evidence for ancient introgression throughout the phylogeny. We further tested whether uninformative genes and over-partitioning were responsible for this discordance by evaluating the phylogenetic signal of individual genes using likelihood mapping, and by analyzing the most informative genes with a full multispecies coalescent model. We find that most genes are not informative at the two conflicting nodes, but neither this nor gene-wise partitioning are the cause of discordant results. New method implementations that simultaneously integrate amino acid profile mixture models and the multispecies coalescent might be necessary to resolve these and other recalcitrant nodes in the Tree of Life.


Author(s):  
Shiqian He ◽  
Liang Kong ◽  
Jing Chen

Accurate detection of N6-methyladenine (6mA) sites by biochemical experiments will help to reveal their biological functions, still, these wet experiments are laborious and expensive. Therefore, it is necessary to introduce a powerful computational model to identify the 6mA sites on a genomic scale, especially for plant genomes. In view of this, we proposed a model called iDNA6mA-Rice-DL for the effective identification of 6mA sites in rice genome, which is an intelligent computing model based on deep learning method. Traditional machine learning methods assume the preparation of the features for analysis. However, our proposed model automatically encodes and extracts key DNA features through an embedded layer and several groups of dense layers. We use an independent dataset to evaluate the generalization ability of our model. An area under the receiver operating characteristic curve (auROC) of 0.98 with an accuracy of 95.96% was obtained. The experiment results demonstrate that our model had good performance in predicting 6mA sites in the rice genome. A user-friendly local web server has been established. The Docker image of the local web server can be freely downloaded at https://hub.docker.com/r/his1server/idna6ma-rice-dl .


2021 ◽  
Author(s):  
Mayumi Kamada ◽  
Atsuko Takagi ◽  
Ryosuke Kojima ◽  
Yoshihisa Tanaka ◽  
Masahiko Nakatsui ◽  
...  

While the number of genome sequences continues to increase, the functions of many detected gene variants remain to be identified. These variants of uncertain significance constitute a major barrier to precision medicine. Although many computational methods have been developed to predict the function of these variants, they all rely on individual gene features and do not consider complex molecular relationships. Here we develop PathoGN, a molecular network-based approach for predicting variant pathogenicity. PathoGN significantly outperforms existing methods using benchmark datasets. Moreover, PathoGN successfully predicts the pathogenicity of 3,994 variants of uncertain significance in the real-world database ClinVar and designates potential pathogenicity. This is the first computational method for the clinical interpretation of variants using biomolecular networks, and we anticipate our method to be broadly useful for the clinical interpretation of variants and for assigning biological function to unknown variants at the genomic scale.


2021 ◽  
Author(s):  
Hamid Reza Ghanavi ◽  
Victoria Twort ◽  
Tobias Joannes Hartman ◽  
Reza Zahiri ◽  
Niklas Wahlberg

The use of molecular data to study evolutionary history of different organisms, revolutionized the field of systematics. Now with the appearance of high throughput sequencing (HTS) technologies more and more genetic sequence data is available. One of the important sources of genetic data for phylogenetic analyses has been mitochondrial DNA. The limitations of mitochondrial DNA for the study of phylogenetic relationships have been thoroughly explored in the age of single locus phylogenies. Now with the appearance of genomic scale data, more and more mitochondrial genomes are available. Here we assemble 47 mitochondrial genomes using whole genome Illumina short reads of representatives of the family Erebidae (Lepidoptera), in order to evaluate the accuracy of mitochondrial genome application in resolving deep phylogenetic relationships. We find that mitogenomes are inadequate for resolving subfamily level relationships in Erebidae, but given good taxon sampling, we see its potential in resolving lower level phylogenetic relationships.


2021 ◽  
Vol 118 (27) ◽  
pp. e2021390118
Author(s):  
Emily Roycroft ◽  
Anna J. MacDonald ◽  
Craig Moritz ◽  
Adnan Moussalli ◽  
Roberto Portela Miguez ◽  
...  

Australia has the highest historically recorded rate of mammalian extinction in the world, with 34 terrestrial species declared extinct since European colonization in 1788. Among Australian mammals, rodents have been the most severely affected by these recent extinctions; however, given a sparse historical record, the scale and timing of their decline remain unresolved. Using museum specimens up to 184 y old, we generate genomic-scale data from across the entire assemblage of Australian hydromyine rodents (i.e., eight extinct species and their 42 living relatives). We reconstruct a phylogenomic tree for these species spanning ∼5.2 million years, revealing a cumulative total of 10 million years (>10%) of unique evolutionary history lost to extinction within the past ∼150 y. We find no evidence for reduced genetic diversity in extinct species just prior to or during decline, indicating that their extinction was extremely rapid. This suggests that populations of extinct Australian rodents were large prior to European colonization, and that genetic diversity does not necessarily protect species from catastrophic extinction. In addition, comparative analyses suggest that body size and biome interact to predict extinction and decline, with larger species more likely to go extinct. Finally, we taxonomically resurrect a species from extinction, Gould’s mouse (Pseudomys gouldii Waterhouse, 1839), which survives as an island population in Shark Bay, Western Australia (currently classified as Pseudomys fieldi Waite, 1896). With unprecedented sampling across a radiation of extinct and living species, we unlock a previously inaccessible historical perspective on extinction in Australia. Our results highlight the capacity of collections-based research to inform conservation and management of persisting species.


Sign in / Sign up

Export Citation Format

Share Document